

Network Function Integrated Type Laser Displacement Sensor HL-G2 series Product Features CE K Fine Configure Series

High-precision Displacement Sensors Made Easier to Use

Network Function Integrated Type Laser Displacement Sensor

HL-G2

$0.5 \ \mu m \ 0.020 \ m l$

Measuring Range*2

±0.05 % F.S.

Class-top^{*1} Sampling Period **100** μS (Fastest)

25 to **400** mm 0.984 to 15.748 in Panasonic

Temperature Characteristic 0.03 % F.S./°C

*1: According to our company's survey, as of February 2024. *2: Specifications vary depending on models.

HL-G2

New Standard for Displacement Sensors: Offering Both High Accuracy and Convenience

01 Industry's top-class*1 measuring performance High-precision Measurement

The **HL-G2** series boasts the industry's top-class⁻¹ performance such as resolution⁻² of 0.5 μ m 0.020 mil, linearity⁻² of ±0.05 % F.S., sampling period of 100 μ s (fastest) and temperature characteristic of 0.03 % F.S./°C. The **HL-G2** sensors deliver the performance rivaling those of displacement meters of one class above, thanks to the optimized and balanced devices, optical system, mechanisms and algorithm. The organic EL display offers excellent visibility. The display language can be selected from English, Japanese and Chinese (simplified Chinese).

*1: According to our company's survey, as of February 2024.

*2: Specifications vary depending on models.

02 Built-in controller and communication unit Easy-to-use Integrated Models

The integrated models feature built-in controllers to facilitate model selection and reduce installation space and cost. The communication type models have built-in communication units for easy connection to a PLC, while the analog output type models are suitable for applications that require continuous acquisition of measurement data from sensors.

- * Communication function is provided only in the communication type models.
- * EtherNet/IP is a registered trademark of ODVA (Open DeviceNet Vendor Association).
- * SLMP is a registered trademark of Mitsubishi Electric Corporation.
- * Modbus is a registered trademark of Schnelder Electric USA Inc.

EtherNet/IP

Modbus TCP Modbus RTU

03 Simple and intuitive operations Setting Tool Software

By using the PC installed with the "**HL-G2 Configuration Tool**" configuration tool software (free to download), parameters can be set easily and simultaneously in multiple **HL-G2** units. Since settings can be made in real time while confirming actual data, the time required for adjustment can be reduced.

Easy-to-use setting tool software

Large Product Lineup

Five different measuring ranges and two different output types available

01 Industry's top-class measurement According to our company's survey, as of February 2024.

Realizing performance rivaling those of displacement meters of one class above

Optimally balanced devices, optical system, mechanisms and algorithm to achieve a high synergetic effect

HDLC-CMOS sensor × Line spot × Extremely narrow beam

The HL-G2 sensors feature HDLC-CMOS sensors that are incorporated in higher-end products. The sensor element not only

offers higher capability in itself but also provides a broader CMOS element width. Combined with the line spot that has been reduced to the limit size, the HL-G2 series boasts high resolution, improved angular characteristic and wide dynamic range in total. The optimized devices, optical system, mechanisms and algorithm realize excellent basic performance.

Industry's Top-class* Performance Realized by Devices, Optical system and Algorithm

Excellent Linearity: ±0.05 % F.S.

The line spot size and extremely narrow beam attain an excellent linearity of ±0.05 % F.S. (limited range) near the center. Furthermore, the optical design of the light receiving

section and the CMOS angle adjustment assure uniform light collection over the entire range to realize an excellent linearity of ±0.075 % F.S. (standard).

High Stability: Temperature characteristic of **0.03** % F.S./°C

The HL-G2 series features an aluminum diecast main unit body and optical unit and employs a glass lens. Various

parts were reviewed and revamped to achieve extremely stable measurement even under an environment with temperature fluctuations.

High-speed Response: 100 µs

The high-speed computing capability of the dedicated custom IC achieves a sampling period of 100 µs (fastest). The HL-G2 series helps improve the responsiveness of applications that demand high-speed tracking.

Line Spot Highly Resistant to **Changes in Surface Condition**

The line spot resists adverse effects caused by a metal surface. The HL-G2 series enables stable measurement

without worries about fine surface irregularities of target objects.

-	comparison of mobile resolution (30 mm 1.181 in type)
E 1181	HL-G2: Stable measurement
und) an 0	ANAM M M MANANA
red value	
easul -30	Previous product
≥ -40 -1.575(0.020 0.039 0.059 0.079 0.098 0.118
	Amount of mobility in direction A (mm in)

All-in-one Unit with Communication Unit and Controller

Previous multi-sensor network control system

Benefits by the Reduced Number of Parts

Reduced Installation Space: Easy to Add on

When multiple sensors were used, many spaces were required for the installation of connected controllers and communication units. The integrated type **HL-G2** models require less installation spaces and they can be easily added to existing lines without worries about installation spaces.

Easier Model Selection, Reduced Installation Space and Cost

In the case of a sensor product with a separate controller, the head, controller, communication unit and master / slave units each have their own model numbers, thus making it cumbersome to determine the model numbers when selecting products to use. The integrated type **HL-G2** models facilitate the selection and determination of product models.

When there are many accessory parts for the sensors, it takes time and effort to find out the part numbers of alternative parts and maintenance parts. Use of the integrated type **HL-G2** models makes the management of model numbers easier.

Easy-to-see Organic EL Display and Multi-language Display Capability

The display section has an easy-to-see organic EL display. The display language can be selected from English, Japanese and Chinese (simplified Chinese). The multi-language display capability and easy-to-understand indications facilitate setting and operation. Previous product
HL-G2
HL-G2
LHSER HI
SEC HI
SEC HI
Chinese
Chinese

Language

English

Language

日本語

Language

简体中文

03 Simple and intuitive operation Setting Tool Software

Setting Tool Software: HL-G2 Configuration Tool

* Supports communication type only.

Basic setting operations such as change / writing of settings, monitoring of received light waveform, image output of measured data / graph and high-speed logging can be performed intuitively, so even people unfamiliar with those operations can enter settings easily. Since the sensor settings can be saved to the computer under a name, it is easy to recover the sensor settings if they are accidentally changed, or to expand the settings when adding sensors for the same application.

Free download from the website

The tool software is used by operators for performing operations such as for assessment at the time of installation, commencement of equipment operation and maintenance.

Setting Tool Software Can Be Operated Even During Equipment Operation* *: When Ethernet communication cable is used

Single PC Used for Management of Multiple HL-G2 Units

) Tool(T)	Help(H)		
0005	690	0 2 V II O		
		Device list		
-		250mm	-131.84mm	
o 灯 🛛	Online	Untitled	GO	
-	IPv4	HL-G2258-S-MK	Bank 1	
		50mm	3.033mm	
ው 🌋	Online	Untitled	GO	
-	IPv4	HL-G2058-S-MK	Bank 1	
de.		30mm	1.2784mm	
o 🐔	Online	Untitled	GO	
-	IPv4	HL-G2038-S-MK	Bank 1	
-		30mm	-0.4223mm	
o 🐔	Online	Untitled	GO	
	IPv4	HL-G2038-S-MK	Bank 1	

By simply selecting the sensor to edit in the screen showing the list of connected sensors, its operating status can be checked and the settings can be changed.

Easy Comparison of Setting Conditions of Multiple Units

The settings of multiple **HL-G2** units can be compared side-by-side. This enables easy adjustment of parameters at a startup and in the case of equipment trouble.

ettings collation					
	Set value				
ltem	Serial No.3DPZ0122 Untitled	Serial No.3DCZ0033 Untitled			
Inversion of Measured Value	OFF	OFF			
Sampling Frequency[ms]	1		1		

Multi-monitor Display Screen

Up to eight sensor units can be simultaneously monitored and displayed. In case of an application that uses multiple sensors, the light receiving conditions of the individual sensors can be compared.

Image Output / Data Output

Measurement results can be output as image data (such as PNG) or CSV data.

	diam (diam () and				
- man		the star			
(here)					
	parate here	0.00	And and had man	Provide Contraction	
			048941118/80		
	- Name of the			and the second s	
	hand of the section	39	-	CONTRACTOR OF A	
	in the second se		- 3	Company and the off	
	Annual Tests				
	* Institution		A STATISTICS IN A REAL PROPERTY.	Provide states and all	
	2		· as another and	Commences and all	
		100	A STREET BOARD		
	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	1.000		-	
	T Opening with a		-9		
	- Present		- 3	-	
		1.000	1		
	10000	10	1 <u>m</u>	8 · *	
	inches .	00000			1
	* Grante			-	
	"Baratar			-	
	The Constantion of the Constanti				
	0.0000000000000000000000000000000000000			1-	

High-speed Logging

The value measured in each sampling cycle can be recorded for use in sensor performance evaluation and maintenance.

Marrison	Name and Logistics	letten der	in internation			
Nexuel vice						
- 1001						
1000						
1	in a second					
····· Ykih	ali ana	and the second	whething	11-11-14-Hot	AVA/Itm	Par Minahal
1.000	II. COMP	11.11	1.00.00	In the second		It. in a
1.040						
13990						
	6.05	é.	6.0 Exposition	410	676	
-		~			-	
	0.05	44	2.45			5.8

Applications

Inspection of battery shape

The **HL-G2** series can be used for the measurement of terminal heights in an inspection process. The **HL-G2** does not need a separate communication unit for communicating via network even for collecting measured data used for traceability.

Inspection of camera actuator operating amount

The **HL-G2** series can compare auto-focus actuator control current and value measured by the sensor for the confirmation of operation. The communication type models do not require an A/D conversion program so that numerical control is easier.

The **HL-G2** series can be used to check the remaining amount of workpieces in a roll-like shape. With a built-in communication unit, the **HL-G2** sensors can communicate via network for assuring traceability and collecting data at low cost.

Inspection of automobile part shape

The **HL-G2** series can be used for the measurement of the dimensions of rubber parts. The improved optical design of the **HL-G2** sensors ensures stabler measurement of low-reflection parts as compared to previous products.

Inspection of flatness of metal frame

The **HL-G2** series can be used for the inspection of flatness of products. All **HL-G2** models feature a line spot specification, so they provide stable measurement performance even if the workpiece has hair lines or relatively rough surface.

Inspection of slitter blade surface runout

The **HL-G2** series can be used for the detection of slitter blade runout so that equipment abnormalities can be detected or data for predictive maintenance can be obtained. The **HL-G2** directly outputs numerical values using the communication function when data are obtained, thus eliminating the need to consider errors that may be generated during A/D conversion.

Control of dispenser height

The **HL-G2** series can be used for the detection of the distance to workpiece for control purposes. The sensors perform sampling at high speeds so smoother equipment control is possible.

Adjustment of alignment

The **HL-G2** series measures the distances from four points and directly outputs numerical values for the adjustment of alignments in the XY θ directions at four points.

Detection of chips on a tray

The **HL-G2** series can be used for the detection of the presence / absence of substrates or thin workpieces on a tray. Because the **HL-G2** employs a CMOS system, it resists adverse effects caused by the color or reflectance of workpieces, thus contributing to stable detection.

The **HL-G2** series can be used for the detection of the positional displacement of the tool attached to the robot arm. By measuring the tool at the appropriate origin, the **HL-G2** sensors can obtain data necessary for correcting the robot arm position relative to the robot axis.

Detection of overlapping rubber parts

The **HL-G2** series can be used for the detection of overlapping rubber parts. The improved optical design of the **HL-G2** assures stabler detection of low-reflection workpieces as compared to previous products.

Selection of resin parts

The **HL-G2** series can be used to measure the heights of products and eliminate different type products from the line. Since the **HL-G2** performs sampling faster than previous products, it offers improved responsiveness to a moving object.

Cables are not supplied with sensor units. Be sure to purchase optional cables.

Туре	Appearance	Measurement center distance and measurement range	Beam diameter (Note 2, 3)	Resolution	Linearity Limited range (top) Other (bottom)	Model No.			
		30 mm ±5 mm 1.181 in ±0.197 in	X-axis: 40 µm 1.575 mil approx. Y-axis: 1,000 µm 39.370 mil approx.	0.5 µm 0.020 mil	±0.05 % F.S. (27.5 mm to 32.5 mm) (1.083 in to 1.280 in) ±0.075 % F.S.	HL-G203B-S-MK			
		50 mm ±10 mm 1.969 in ±0.394 in	X-axis: 60 µm 2.362 mil approx. Y-axis: 2,000 µm 78.740 mil approx.	1.5 μm 0.059 mil	±0.05 % F.S. (45 mm to 55 mm) (1.772 in to 2.165 in) ±0.075 % F.S.	HL-G205B-S-MK			
Communication type		85 mm ±20 mm 3.346 in ±0.787 in	X-axis: 90 µm 3.543 mil approx. Y-axis: 3,000 µm 118.110 mil approx.	2.5 μm 0.098 mil	±0.05 % F.S. (75 mm to 95 mm) (2.953 in to 3.740 in) ±0.075 % F.S.	HL-G208B-S-MK			
		120 mm ±30 mm 4.724 in ±1.181 in	X-axis: 100 μm 3.937 mil approx. Y-axis: 4,000 μm 157.480 mil approx.	4 μm 0.157 mil	±0.05 % F.S. (105 mm to 135 mm) (4.134 in to 5.315 in) ±0.075 % F.S.	HL-G212B-S-MK			
		250 mm ±150 mm 9.843 in ±5.906 in	X-axis: 300 μm 11.811 mil approx. Y-axis: 8,000 μm 314.961 mil approx.	15 μm 0.591 mil	±0.15 % F.S. (200 mm to 300 mm) (7.874 in to 11.811 in) ±0.25 % F.S.	HL-G225B-S-MK			
					30 mm ±5 mm 1.181 in ±0.197 in	X-axis: 40 µm 1.575 mil approx. Y-axis: 1,000 µm 39.370 mil approx.	0.5 μm 0.020 mil	±0.05 % F.S. (27.5 mm to 32.5 mm) (1.083 in to 1.280 in) ±0.075 % F.S.	HL-G203B-A-MK
		50 mm ±10 mm 1.969 in ±0.394 in	X-axis: 60 µm 2.362 mil approx. Y-axis: 2,000 µm 78.740 mil approx.	1.5 μm 0.059 mil	±0.05 % F.S. (45 mm to 55 mm) (1.772 in to 2.165 in) ±0.075 % F.S.	HL-G205B-A-MK			
Analog output type		85 mm ±20 mm 3.346 in ±0.787 in	X-axis: 90 μm 3.543 mil approx. Y-axis: 3,000 μm 118.110 mil approx.	2.5 μm 0.098 mil	±0.05 % F.S. (75 mm to 95 mm) (2.953 in to 3.740 in) ±0.075 % F.S.	HL-G208B-A-MK			
		120 mm ±30 mm 4.724 in ±1.181 in	X-axis: 100 μm 3.937 mil approx. Y-axis: 4,000 μm 157.480 mil approx.	4 μm 0.157 mil	±0.05%F.S (105 mm to 135 mm) (4.134 in to 5.315 in) ±0.075 % F.S.	HL-G212B-A-MK			
		250 mm ±150 mm 9.843 in ±5.906 in	X-axis: 300 μm 11.811 mil approx. Y-axis: 8,000 μm 314.961 mil approx.	15 µm 0.591 mil	±0.15 % F.S. (200 mm to 300 mm) (7.874 in to 11.811 in) ±0.25 % F.S.	HL-G225B-A-MK			

Notes: 1) Unless otherwise specified, the above specifications are typical values measured under the following measurement conditions. They do not guarantee performance for all target objects. Power supply voltage: 24 V DC, ambient temperature: 20 °C 68 °F, sampling cycle: 1 ms, average count: 512 times,

a cover supply voltage. 24 v DG, and entremperature. 20 v Go r, sampling cycle. 1 ms, average count: 512 times, measurement center distance, target object: visible light shielding ceramic
2) The X and Y axes of the beam diameter are specified as shown in the figure on the right.
3) The beam diameter is defined as 1/e² (approx. 13.5 %) of the center light intensity. Due to leak light outside the defined range, the measurement values may be affected if the reflectance around the detecting point is higher than that of the detecting point.

Cables are not supplied with sensor units. Be sure to purchase optional cables.

Туре		Appearance	Model No.	Description		
	Ethernet type		CN-8E-C2	Length 2 m 6.562 ft		
	Ememertype		CN-8E-C5	Length 5 m 16.404 ft		
	RS-485 type		CN-8R-C2	Length 2 m 6.562 ft	Used with communication type sensor HL-G2B-S-MK .	
Optional			CN-8R-C5	Length 5 m 16.404 ft	Two M2.6 screws provided.	
cable			CN-8R-C10	Length 10 m 32.808 ft		
			CN-8R-C20	Length 20 m 65.617 ft		
	Analog output		CN-8A-C2	Length 2 m 6.562 ft	Used with analog output type sensor HL-G2B-A-MK .	
	type		CN-8A-C5	Length 5 m 16.404 ft	Two M2.6 screws provided.	

Operating Environment for Configuration Tool Software HL-G2 Configuration Tool

The following operating environment must be assured in order to use the configuration tool software HL-G2 Configuration Tool. Confirm that your system satisfies the requirements and that the required devices have been arranged.

Item	Requirements			
OS	Windows [®] 10 (32 bit / 64 bit), Windows [®] 11 (64 bit)			
CPU	Intel [®] Core ™ i3 1 GHz or faster			
Memory	2 GB or more			
Available hard disk space	200 MB or more			
Screen resolution	1366 × 768 or higher (recommended)			
Display language	Japanese, English, Chinese (Simplified), Korean			
Communication interface	Ethernet, RS-485			
Operating conditions	.NET Frameworks 4.8 or later must be installed.			

Note: Compatibility not guaranteed if the OS version used is no longer supported by Microsoft Corporation.

* Windows is a trademark or registered trademark of Microsoft Corporation in the United States and/or other countries.
* Intel Core is a trademark or registered trademark of Intel Corporation and its subsidiaries in the United States and/or other countries.

Communication type

\checkmark	_	Туре			Communication type	·				
Item		Model No.	HL-G203B-S-MK	HL-G205B-S-MK	HL-G208B-S-MK	HL-G212B-S-MK	HL-G225B-S-MK			
Applicable certificatio		ions and		irective, RoHS Directive), on (U.S.A., Canada), Kore	UKCA Marking (EMC Reg a KC Mark	ulations, RoHS Regulation	s), FDA Regulation,			
Measurem	nent cen	ter distance	30 mm 1.181 in	50 mm 1.969 in	85 mm 3.346 in	120 mm 4.724 in	250 mm 9.843 in			
Measurem	nent rang	ge	±5 mm ±0.197 in	±10 mm ±0.394 in	±20 mm ±0.787 in	±30 mm ±1.181 in	±150 mm ±5.906 in			
Beam diameter (Note 2)(Note 3)			X-axis: 40 μm 1.575 mil approx. Y-axis: 1,000 μm 39.370 mil approx.	X-axis: 60 μm 2.362 mil approx. Y-axis: 2,000 μm 78.740 mil approx.	X-axis: 90 μm 3.543 mil approx. Y-axis: 3,000 μm 118.110 mil approx.	X-axis: 100 μm 3.937 mil approx. Y-axis: 4,000 μm 157.480 mil approx.	X-axis: 300 µm 11.811 mil approx. Y-axis: 8,000 µm 314.961 mil approx.			
Resolution			0.5 µm 0.020 mil	1.5 µm 0.059 mil	2.5 µm 0.098 mil	4 µm 0.157 mil	15 µm 0.591 mil			
Linearity		_imited range	±0.05 % F.S. (27.5 mm to 32.5 mm) (1.083 in to 1.280 in)	±0.05 % F.S. (45 mm to 55 mm) (1.772 in to 2.165 in)	±0.05 % F.S. (75 mm to 95 mm) (2.953 in to 3.740 in)	±0.05 % F.S. (105 mm to 135 mm) (4.134 in to 5.315 in)	±0.15 % F.S. (200 mm to 300 mm) (7.874 in to 11.811 in)			
		Other than above	±0.075 % F.S.	±0.075 % F.S.	±0.075 % F.S.	±0.075 % F.S.	±0.25 % F.S.			
Temperatu	ure chara	acteristics			0.03 % F.S./°C					
Measuring	g method	t			Diffuse reflection					
Light source	ce		Red sen		[IEC / EN / JIS / GB / KS / 1 mW, Peak emission wa		(Note 4)]			
Light recei	iving ele	ement			CMOS image sensor					
Power sup	oply volta	age	Power supply	units with a current capac	ity of 500 mA or more, incl	uding 24 V DC ±10 %, ripp	ole 0.5 V (P-P)			
Current co	onsumpt	ion			150 mA or less (Note 5)					
Sampling	cycle			100	μs, 200 μs, 500 μs, 1 ms,	2 ms				
Communic		Ethernet	 Only Auto Negotiation 10 M / 100 Mbps (Half Duplex / Full Duplex) supported. Communication may be unstable if connected to a device that does not support Auto Negotiation. IEEE802.3u, 10BASE-T / 100BASE-TX RJ45 Supported protocol: EtherNet/IP, Modbus TCP, and SLMP 							
interface	F	RS-485	Communication speed: 9,600 / 19,200 / 38,400 / 115,200 / 230,400 bps Supported protocol: Modbus RTU Maximum number of connected units: 16							
External in	nput I	N 1	Trigger input The input conditions are interlocked with NPN / PNP setting of the control output When NPN output is selected> Source current: 1.5 mA approx. Input conditions Invalid: 3 to 26.4 V DC or when released Valid: 0 to 1.5 V DC Valid: 19 to 26.4 V DC							
		_aser adiation		Green LED (Lit while laser beams are being emitted)						
Indicators	_	Alarm	Orange LED (Lit when measurement is not possible due to insufficient or excessive received light intensity, or due to excessive extraneous light)							
Display se	ection			0.9 inch organic EL Measured value: signed 5-digit (maximum of 4 digits after the decimal point)						
Pollution d	degree			2						
Operating	altitude	(Note 6)		2,000 m 6561.680 ft or less						
Grounding	g method	b		Capacitor grounding						
Prote	ection				IP67 (IEC)					
Amb	pient tem	nperature	-10 to +45	°C -14 to 113 °F (No icing	allowed), Storage: -20 to +	-60 °C -4 to 140 °F (No ici	ng allowed)			
Amb	pient hun	nidity	35 to 85	% RH (No condensation a	allowed), Storage: 35 to 85	5 % RH (No condensation	allowed)			
Amb	pient illur	minance		Incandescent ligh	nt: 3,000 {x or less at the lig	ght-receiving face				
Amb Amb Amb Insul With Vibra	lation re	sistance		20 MΩ	or higher, using 500 V DC	megger				
With	stand vo	oltage		1,000 V AC be	tween all terminals and ca	se for 1 minute				
Vibra	ation res	sistance	10 to 55 Hz (period	: 1 min.) frequency, 1.5 m	m 0.059 in double amplitue	de in X, Y and Z directions	for two hours each			
Shoo	ck resist	ance		500 m/s ² acceleration (50	G approx.) in X, Y and Z o	lirections three times each				
Material				Product casing: Alumi	num die casting, Front cov	er: Glass, Cable: PVC				
Weight				Net weight: 15	0 g approx., Gross weight	200 g approx.				
-			L	Ŭ	0					

Notes: 1) Unless otherwise specified, the above specifications are typical values measured under the following measurement

conditions. They do not guarantee performance for all target objects.
Power supply voltage: 24 V DC, ambient temperature: 20 °C 68 °F, sampling cycle: 1 ms, average count: 512 times, measurement center distance, target object: visible light shielding ceramic
2) The X and Y axes of the beam diameter are specified as shown in the figure on the right.
3) The beam diameter is defined as 1/e² (approx. 13.5 %) of the center light intensity.

×

Due to leak light outside the defined range, the measurement values may be affected if the reflectance around the 4) This product complies with the FDA regulations (FDA 21 CFR 1040.10 and 1040.11) in accordance with FDA Laser Notice No. 56, except for complying with IEC 60825-1 Ed. 3.
5) Current consumption of the sensor only. External input current is not included.
6) Do not use or store this product in environments where ambient air is pressurized to an air pressure higher than the

atmospheric pressure at an altitude of 0 m.

* Ethernet is a registered trademark of FUJIFILM Business Innovation Corp.
 * EtherNet/IP is a trademark or a registered trademark of Open DeviceNet Vendors Association (ODVA).
 * Moduus is a registered trademark of Schneider Electric USA Inc.

* SLMP is a registered trademark of Mitsubishi Electric Corporation.

Analog output type

*Please see the previous page for the explanatory notes.

Item	Type Model No.	HL-G203B-A-MK	HL-G205B-A	-MK	Analog output type	HL-G212B-A-MK	HL-G225B-A-MK	
Applicable	regulations and				UKCA Marking (EMC Reg	-		
certification	ns	TÜV SÜD Certification	on (U.S.A., Canada	a), Kore	a KC Mark			
Measurem	ent center distance	30 mm 1.181 in	50 mm 1.969) in	85 mm 3.346 i	120 mm 4.724 in	250 mm 9.843 in	
Measurem	ient range	±5 mm ±0.197 in	±10 mm ±0.39	94 in	±20 mm ±0.787 in	±30 mm ±13.78 in	±150 mm ±5.906 in	
Beam Diameter (Note 2)(Note 3) Resolution		X-axis: 40 μm 1.575 mil approx. Y-axis: 1,000 μm 39.370 mil approx.	X-axis: 60 μm 2.362 mil approx. Y-axis: 2,000 μm 78.740 mil approx.		X-axis: 90 μm 3.543 mil approx. Y-axis: 3,000 μm 118.110 mil approx.	X-axis: 100 μm 3.937 mil approx. Y-axis: 4,000 μm 157.480 mil approx	X-axis: 300 µm 11.811 mil approx. Y-axis: 8,000 µm x. 314.961 mil approx	
Resolution	1	0.5 µm 0.020 mil	1.5 µm 0.059 mil		2.5 µm 0.098 mil	4 µm 0.157 mil	15 µm 0.591 mil	
Linearity	Limited range	±0.05 % F.S. (27.5 mm to 32.5 mm) (1.083 in to 1.280 in)	±0.05 % F.S. (45 mm to 55 mm) (1.772 in to 2.165 in)		±0.05 % F.S. (75 mm to 95 mm) (2.953 in to 3.740 in)	±0.05 % F.S. (105 mm to 135 mm) (4.134 in to 5.315 in)	±0.15 % F.S. (200 mm to 300 mm) (7.874 in to 11.811 in)	
	Other than above	±0.075 % F.S.	±0.075 % F.	S.	±0.075 % F.S.	±0.075 % F.S.	±0.25 % F.S.	
Temperatu	re characteristics				0.03 %F.S./°C			
Measuring	method				Diffuse reflection			
Light sourc	ce	Red sen			[IEC / EN / JIS / GB / KS : 1 mW, Peak emission wa		6 (Note 4)]	
Light receiv	ving element				CMOS image sensor			
Power sup	ply voltage	Power supply	units with a curren	nt capac	tity of 500 mA or more, inc		pple 0.5 V (P-P)	
Current co	nsumption				150 mA or less (Note 5)			
Sampling of	cycle				μs, 200 μs, 500 μs, 1 ms,			
			Ou		de switchable by changin	<u> </u>		
			(Default value)	Whe	en voltage output is select 0 V to 5 V / F.S.	ed When current ou 4 mA to 20		
			utput range		0 V to 5.25 V	3.2 mA to		
		Ala	rm *1		5.3 V ± 20 mV		mA ± 100 μA	
		-	inate state		5.5 V ± 20 mV	23 mA ±		
	haut		edance ution *2	0	Dutput impedance: 100 Ω ± 2 mV	Load impedance ± 6		
Analog out	ipui		Linearity *3		±0.05 % F.S.	±0.25 %		
			characteristics		0.005 % F.S./°C	0.01 %		
OUT 1 OUT 2 Control OUT 3		 Static resolution and linearity error by measurement will be added. *3: This refers to the linearity of analog output only. *3: This refers to the linearity error by measurement will be added. This does not include the repeatability of analog output only. * Possible to switch over between NPN transistor open collector / PNP transistor open collector by changing the setting * Possible to switch over between judgment output and alarm output by changing the setting * When NPN output is selected> * Maximum sink current: 50 mA * Applied voltage: 2 V or less (at 50 mA sink current) * Residual voltage: 2 V or less (at 50 mA sink current) 						
	OUT 2	Applied voltage: 26.4			tput and 0 V) • Maximu • Residua	m source current: 50 mA Il voltage: 2.8 V or less (a	t 50 mA source current)	
	OUT 2 OUT 3	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1	or less (at 50 mA s mA or less	sink curi	tput and 0 V) rent) • Maximu • Residua • Leakage	m source current: 50 mA al voltage: 2.8 V or less (a e current: 0.1 mA or less	,	
Control output	OUT 2 OUT 3 Output type	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1	or less (at 50 mA s mA or less ible to switch over	sink curi betwee	tput and 0 V) rent) · Maximu · Residua · Leakage	m source current: 50 mA Il voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the	setting	
	OUT 2 OUT 3	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s b interlocked with N lected> A approx.	betwee natic rec etting, n	*Maximu *Residue * Residue * Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control of <when pn<br="">• Sink cui • Invalid:</when>	m source current: 50 mA il voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx.	setting	
External	OUT 2 OUT 3 Output type Protection	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open	betwee natic rec etting, r IPN / Pt	*Maximu *Residue * Residue * Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control of <when pn<br="">• Sink cui • Invalid:</when>	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC	setting	
External	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s b interlocked with N lected> A approx. C or open Green	betwee natic rec etting, r IPN / Pt	tput and 0 V) rent) en open and close when s covery type) * This is not a measured value resetting, NP setting of the control c <when pn<br="">• Sink cuu • Input cc Invalid: Valid: 19 Lit while laser beams are le due to insufficient or ex</when>	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted)	setting	
output External input	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control o 	m source current: 50 mA Il voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inte	setting ank by changing the settin ensity, or due to excessive	
External input Indicators	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control c When PN Sink cuu Input cc Invalid: Valid: 19 Lit while laser beams are le due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inte its after the decimal point	setting ank by changing the settin ensity, or due to excessive	
External input Indicators Display ser Pollution d	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control o 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inte its after the decimal point	setting ank by changing the settin ensity, or due to excessive	
External input Indicators Display see Pollution d Operating	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6)	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control c When PN Sink cuu Input cc Invalid: Valid: 19 Lit while laser beams are le due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inte its after the decimal point	setting ank by changing the settin ensity, or due to excessive	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Covery type) * This is not a measured value resetting, NP setting of the control of When PN Sink cuu Invalid: Valid: 19 Lit while laser beams are Ide due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or lege 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inte its after the decimal point	setting ank by changing the settin ensity, or due to excessive	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n extraneous light)	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green neasurement is not Measured value:	betwee natic rec etting, r IPN / Pt n LED ((t possib signed	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control of When PN Sink cui Invalid: Valid: 19 Lit while laser beams are le due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or les Capacitor grounding 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inter- its after the decimal point ss	setting ank by changing the settin ensity, or due to excessive	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n extraneous light)	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N	betwee natic rec etting, r IPN / PI n LED (I t possib signed	 Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control of When PN Sink cui Invalid: Valid: 19 Lit while laser beams are Ie due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or les Capacitor grounding IP67 (IEC) 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba- utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) ccessive received light inter- its after the decimal point ass +60 °C -4 to 140 °F (No inter-	setting ank by changing the settin ensity, or due to excessive) cing allowed)	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction ent temperature	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n extraneous light)	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N is % RH (No conder	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed	tput and 0 V) rent) Maximu Residua Leakage en open and close when s covery type) * This is not a measured value resetting, NP setting of the control c <when pn<br="">• Sink cuu • Input cc Invalid: Valid: 11 Lit while laser beams are ile due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or les Capacitor grounding IP67 (IEC) allowed), Storage: -20 to</when>	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba- utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inte its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation	setting ank by changing the settin ensity, or due to excessive) cing allowed)	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction eent temperature ent temperature	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n extraneous light)	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green measurement is not Measured value: °C -14 to 113 °F (N s % RH (No conder Incandes)	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed signed	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi This is not a measured value resetting, NP setting of the control or <when li="" pn<=""> Sink cuu Input co Invalid: Valid: 19 Lit while laser beams are le due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or less Capacitor grounding IP67 (IEC) allowed), Storage: -20 to allowed), Storage: 35 to 8 ht: 3,000 fx or less at the I </when>	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba- utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inter- its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation ight-receiving face	setting ank by changing the settin ensity, or due to excessive) cing allowed)	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction ent temperature ent temperature ent illuminance ation resistance	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Valid: 0 to 1.5 V DC Orange LED (Lit when n extraneous light)	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s e interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N i % RH (No conder Incandes)	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed signed vo icing nsation a cent lign 20 MΩ	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Popen and close when s covery type) * This is not a measured value resetting, NP setting of the control of www.wikitagiotics.com NP setting of the control of <wli>When PN</wli> Sink cuu Input com Invalid: Valid: 19 Lit while laser beams are de due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or less Capacitor grounding IP67 (IEC) allowed), Storage: -20 to allowed), Storage: 35 to 8 ht: 3,000 fx or less at the I or higher, using 500 V DC 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inte its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation ight-receiving face c megger	setting ank by changing the settin ensity, or due to excessive) cing allowed)	
External input Indicators Display see Pollution d Operating Grounding	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction ent temperature ent humidity ent illuminance ation resistance ctand voltage	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Orange LED (Lit when n extraneous light) -10 to +45 35 to 85	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N i % RH (No conder Incandes) 1,000 N	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed signed 2 No icing nsation a cent ligh 20 MΩ / AC be	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Popen and close when s covery type) * This is not a measured value resetting, NP setting of the control of www.www.setting Sink cuu Invalid: Valid: 19 Lit while laser beams are Ide due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or lest Capacitor grounding IP67 (IEC) allowed), Storage: -20 to allowed), Storage: 35 to 8 ht: 3,000 fx or less at the I or higher, using 500 V DC ttween all terminals and communication of the set of the se	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inte its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation ight-receiving face c megger ase for 1 minute	setting ank by changing the settin ensity, or due to excessive) cing allowed) n allowed)	
External input Indicators Display see Pollution d Operating Grounding Prote Ambie Ambie Insula Withs Vibrat	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction ent temperature ent humidity ent illuminance ation resistance tion resistance	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Orange LED (Lit when n extraneous light) -10 to +45 35 to 85	or less (at 50 mA s mA or less ible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N i % RH (No conder Incandes) 1,000 V d: 1 min.) frequency	sink curr betwee natic rec etting, r IPN / Pt n LED (I t possib signed signed v cont ligh 20 MQ / AC be y, 1.5 m	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Covery type) * This is not a measured value resetting, NP setting of the control of When PN Sink cuit Invalid: Valid: 19 Lit while laser beams are Ide due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or les Capacitor grounding IP67 (IEC) allowed), Storage: -20 to allowed), Storage: 35 to 8 ant: 3,000 fx or less at the I or higher, using 500 V DC etween all terminals and ci m 0.059 in double amplitu 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inte its after the decimal point its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation ight-receiving face c megger ase for 1 minute ide in X, Y and Z direction	setting ank by changing the settin ensity, or due to excessive) cing allowed) n allowed) as for two hours each	
External input Indicators Display see Pollution d Operating Grounding Brote Ambie Ambie Insula Withs Vibrat	OUT 2 OUT 3 Output type Protection IN 1 IN 2 IN 3 Laser radiation Alarm ction egree altitude(Note 6) method ction ent temperature ent humidity ent illuminance ation resistance ctand voltage	Applied voltage: 26.4 Residual voltage: 2 V Leakage current: 0.1 I Poss Possible to switch over The input conditions are Source current: 1.5 m Input conditions Invalid: 3 to 26.4 V DC Orange LED (Lit when n extraneous light) -10 to +45 35 to 85	or less (at 50 mA s mA or less iible to switch over Equipped (Auton from trigger, zero s interlocked with N lected> A approx. C or open Green neasurement is not Measured value: °C -14 to 113 °F (N % RH (No conder Incandess 1,000 N d: 1 min.) frequence	sink curr betwee natic rec etting, r IPN / PI n LED (I t possib signed signed No icing hastion a cent ligh 20 MΩ / AC be y, 1.5 m tion (50	 Maximu Residua Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Leakagi Popen and close when s covery type) * This is not a measured value resetting, NP setting of the control of When Ps Sink cuu Input co Invalid: Valid: 19 Lit while laser beams are Ide due to insufficient or ex 0.9 inch organic EL 5-digit (maximum of 4 dig 2 2,000 m 6561.680 ft or les Capacitor grounding IP67 (IEC) allowed), Storage: -20 to allowed), Storage: 35 to 8 ht: 3,000 fx or less at the I or higher, using 500 V DC ttween all terminals and co 	m source current: 50 mA I voltage: 2.8 V or less (a e current: 0.1 mA or less et to ON by changing the an overcurrent protection. laser stop, teaching, or ba utput P output is selected> rent: 2.5 mA approx. nditions 0 to 11 V DC or open 0 to 26.4 V DC being emitted) cessive received light inte its after the decimal point its after the decimal point ss +60 °C -4 to 140 °F (No in 5 % RH (No condensation ight-receiving face c megger ase for 1 minute ide in X, Y and Z directior directions three times eac	setting ank by changing the settin ensity, or due to excessive) cing allowed) n allowed) as for two hours each	

EXAMPLE OF SYSTEM CONFIGURATION

Communication type

Ethernet communication

RS-485 communication

- RS-485 wiring allows connection of up to 16 devices.
- When RS-485 wiring is used for the converter, be sure to check for proper operation using actual equipment before using.

Analog output type

PRECAUTIONS FOR PROPER USE

 Use M4 screws with captive washers (length: 30 mm 1.181 in or longer) (not provided with product) for the installation of the product. The tightening torque should be 0.8 N·m or less.

Beam diameter

Model No.	Beam diameter (Unit: mm in)					
would no.	а	b	С	d	е	f
HL-G203B-S-MK	0.7	0.1	1.0	0.04	1.3	0.1
HL-G203B-A-MK	0.028	0.004	0.039	0.002	0.051	0.004
HL-G205B-S-MK	1.2	0.2	2.0	0.06	2.8	0.2
HL-G205B-A-MK	0.047	0.008	0.079	0.002	0.110	0.008
HL-G208B-S-MK	2.0	0.3	3.0	0.09	4.0	0.2
HL-G208B-A-MK	0.079	0.012	0.118	0.004	0.157	0.008
HL-G212B-S-MK	2.8	0.3	4.0	0.1	5.2	0.3
HL-G212B-A-MK	0.110	0.012	0.157	0.004	0.205	0.012
HL-G225B-S-MK	2.5	0.7	8.0	0.3	13.5	0.5
HL-G225B-A-MK	0.098	0.028	0.315	0.012	0.531	0.020

 This catalog is a guide to select a suitable product. Be sure to read instruction manual attached to the product prior to its use.

• Never use this product as a sensing device for personnel protection.

 In case of using sensing devices for personnel protection, use products which meet laws and standards, such as OSHA, ANSI or IEC etc., for personnel protection applicable in each region or country.

 Hazardous exposure to laser radiation may result if control or adjustment operations are performed based on procedures not specified in the product instruction manual or User's Manual.

- This product is classified as a Class 2 Laser Product under IEC / EN / JIS / GB / KS standards and FDA * regulations. Do not look at the laser beam directly or through an optical system such as a lens.
- Based on the safety standards for laser products, FDA / IEC (EN) standard certification / identification / warning labels are affixed to both sides of this product.

- This product is shipped with JIS, GB, and KS standard warning labels. Affix appropriate labels over the FDA / IEC (EN) labels as needed.
- *: This product complies with the FDA regulations (FDA 21 CFR 1040.10 and 1040.11) in accordance with FDA Laser Notice No. 56, except for complying with IEC 60825-1 Ed. 3. (Class 2 laser products)
- This product has been developed / produced for industrial use only.
- This product is suitable for indoor use only.

SENSING CHARACTERISTICS (TYPICAL)

HL-G203B-S-MK

Communication type

HL-G205B-S-MK

Communication type

Communication type

Communication type

HL-G225B-S-MK

Communication type

· Horizontal placement

HL-G212B-S-MK

DIMENSIONS (Unit: mm in)

Sensor

HL-G2 B-S-MK HL-G2 B-A-MK

CN-8R-C Optional Cable for RS-485 Communication (Sold Separately) · Length L Installation diagram M2.6 screw 4.8 0.189 Model No. Length L e (CN-8R-C2 2,000 78.740 202 000 **CN-8R-C5** 5,000 196.850 CN-8R-C10 10,000 393.701 13.6 CN-8R-C20 20,000 787.402 ø5. 8.9 0.74 ¥ 18.9 0.744 D O 13.6 6 20 18 0.70 ø5.7 ø0.224 cable

Disclaimer

The applications described in the catalog are all intended for examples only. The purchase of our products described in the catalog shall not be regarded as granting of a license to use our products in the described applications. We do NOT warrant that we have obtained some intellectual properties, such as patent rights, with respect to such applications, or that the described applications may not infringe any intellectual property rights, such as patent rights, of a third party.

Panasonic Industry Co., Ltd.

Industrial Device Business Division 7-1-1, Morofuku, Daito-shi, Osaka 574-0044, Japan industrial.panasonic.com/ac/e/