/N : Without CE or UL
/CE: CE marking
/UL: UL approval (CE marking)
*1: Configurator software is used to change input over the described range of the selected suffix code. For changing out of this range (between S 1 and S 2), set the Input Range Selector on the side of unit before software adjustment.
For a current input, set the Selector to the same setting as for S 2 and use a receiving resistor.
*2: Configurator software is used to change output over the described range of the selected suffix code. For changing out of this range, set the Output Range Selectors inside the unit before software adjustment.

ORDERING INFORMATION

Specify code number and variables. Default setting (table below) will be used if not otherwise specified.

- Code number (e.g. M2XF-S2Z1-M2/CE)
- Input range (e.g. $0-5 \mathrm{~V} \mathrm{DC}$)
- Output range (e.g. $4-20 \mathrm{~mA} \mathrm{DC}$)

INPUT CODE	DEFAULT
Z 1	$4-20 \mathrm{~mA} \mathrm{DC}$
S 1	$0-100 \mathrm{mV} \mathrm{DC}$
S 2	$1-5 \mathrm{~V}$ DC
OUTPUT CODE	DEFAULT
Z 1	$4-20 \mathrm{~mA} \mathrm{DC}$
V 1	$0-1 \mathrm{~V} \mathrm{DC}$
V 2	$1-5 \mathrm{~V} \mathrm{DC}$

Functions \& Features

- Accepting non-linear input and providing a linearized output, proportional to the process variables •100-point calibration • PC programmable -Three-way isolation - High-density mounting
- Wide ambient temperature range - CE marking
- UL approval

Typical Applications

- V-notch weir • Gas analyzer • Irregular-shaped tank level input for volume calculation - Square root extracting for DP transmitter

RELATED PRODUCTS

- JX configurator connection kit (model: JXCON)

GENERAL SPECIFICATIONS

Construction: plug-in
Connection: M3 screw terminals (torque $0.8 \mathrm{~N} \cdot \mathrm{~m}$)
Housing material: flame-resistant resin (black)
Isolation: input to output to power
Overrange output: approx. $-15-+115 \%$
(Negative current output is not provided.)
Manual zero/span adjustments: See Front View.
Linearization: 100 points max. within the range of -
$15-+115 \%$ input or output; represented as percentage of full-scale (No table setting is done at shipping. [gain $=1$])
Programming: downloaded from PC; input range, output range, zero and span, simulating output, linearization table, etc.
Status indicator LED: flashing patterns indicate different operating status of the transmitter.
Configurator connection: 2.5 dia. miniature jack; RS-232C level

INPUT \& OUTPUT

IINPUT
-DC Current: $0-50 \mathrm{~mA}$ DC; shunt resistor attached to input terminals $(100 \Omega, 0.5 \mathrm{~W})$
Operational range: $0-70 \mathrm{~mA}$ DC
Minimum span: 2 mA
Zero suppression: available
-DC Voltage: -10 - +10V DC
Operational range: $-11.5-+11.5 \mathrm{~V}$ DC
Minimum span: 10 mV for $\mathrm{S} 1 ; 100 \mathrm{mV}$ for S 2
Zero suppression/elevation: available

■OUTPUT

-DC Current: 0 - 20mA DC
Operational range: $0-24 \mathrm{~mA} \mathrm{DC}$
Minimum span: 1 mA
Zero suppression: available
Load resistance: output drive 15 V maximum
(e.g. $4-20 \mathrm{~mA}: 750 \Omega[15 \mathrm{~V} / 20 \mathrm{~mA}]$)

- DC Voltage: -2.5 - +2.5V DC for V1;
$-10-+10 \mathrm{~V}$ DC for V2
Operational range: $-3-+3 \mathrm{~V}$ DC for V 1 ;
$-11.5-+11.5 \mathrm{~V}$ DC for V 2
Minimum span: 250 mV for V1; 1 V for V2
Zero suppression/elevation: available
Load resistance: output drive 1 mA maximum
(e.g. $1-5 \mathrm{~V}: 5000 \Omega[5 \mathrm{~V} / 1 \mathrm{~mA}]$)

INSTALLATION

Power input

AC: operational voltage range $85-264 \mathrm{~V}$
($90-264 \mathrm{~V}$ for UL);
$47-66 \mathrm{~Hz}$, approx. 2.3VA
DC: operational voltage range for $\mathrm{R}: 24 \mathrm{~V} \pm 10 \%$ or P: $85-150 \mathrm{~V}$ ($110 \mathrm{~V} \pm 10 \%$ for UL); approx. 0.9 W (ripple 10% p-p max.)
Operating temperature: -30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
Operating humidity: 30 to $90 \% \mathrm{RH}$ (non-condensing)
Mounting: surface or DIN rail
Dimensions: W $23 \times \mathrm{H} 76 \times$ D $124 \mathrm{~mm}\left(0.91 " \times 2.99^{\prime \prime} \times 4.88^{\prime \prime}\right)$ See General Spec. Sheet Figure A-2.
Weight: $\quad 120 \mathrm{~g}(0.26 \mathrm{lbs})$
Terminal assignment: See General Spec. Sheet Figure B-2.

PERFORMANCE

Accuracy: input accuracy + output accuracy [gain ≤ 1] (inp. accuracy + out. accuracy) \times gain [gain ≥ 1]
Input accuracy*: (\% of input range)

$$
\begin{array}{ll}
-1-+1 \mathrm{~V} & : \leq \pm 0.01(\%) \\
-10-+10 \mathrm{~V} & : \leq \pm 0.01 \\
0-50 \mathrm{~mA} & : \leq \pm 0.01^{* *} \\
\text { (e.g. } 1-5 \mathrm{~V}: & \left.0.05 \%\left[20 / 4^{*} 0.01\right]\right)
\end{array}
$$

Output accuracy*: $\leq \pm 0.01 \%$ of output range
*Inversely proportional to the span
**Except the accuracy of input resistor
Temp. coefficient
(at -5 to $+55^{\circ} \mathrm{C}\left[23\right.$ to $\left.131^{\circ} \mathrm{F}\right]$ of I/O range)
Input: $\quad \pm 0.008 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.005 \% /{ }^{\circ} \mathrm{F}\right)$ with current
$\pm 0.002 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.001 \% /{ }^{\circ} \mathrm{F}\right)$ with voltage
Output: $\pm 0.013 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.007 \% /{ }^{\circ} \mathrm{F}\right)$
Response time: ≤ 0.9 seconds ($0-90 \%$)
Line voltage effect: $\pm 0.1 \%$ over voltage range
Insulation resistance: $\geq 100 \mathrm{M} \Omega$ with 500 V DC
Dielectric strength: 2000 V AC @1 minute
(input to output to power to ground)

STANDARDS \& APPROVALS

CE conformity: EMC Directive (89/336/EEC)
EMI EN61000-6-4
EMS EN61000-6-2
Low Voltage Directive (73/23/EEC)
Installation category II
Pollution degree 2
Max. operating voltage 300 V
Input or output to power - Reinforced insulation
Input to output - Basic insulation
Approval: UL/C-UL nonincendive Class I, Division 2 , Groups A, B, C, and D hazardous locations (UL 1604, CAN/CSA-C22.2 No.213);
UL/C-UL general safety requirements
(UL 3111-1, CAN/CSA-C22.2 No.1010-1)

■FRONT VIEW (with cover open)

The front cover cannot be turned open by 180 deg. when there is no extra space between units.

■RIGHT SIDE VIEW

Manual zero/span adjustments: $\pm 5 \%$ (set to 0% and 100% respectively at factory)

Zero/span selector

ZERO: UP/DOWN switches usable for zero adjustment.
OFF: UP/DOWN switches unavailable.
SPAN: UP/DOWN switches usable for span adjustment.

UP/DOWN switches

UP: Pressing UP increases adjusted values.
DOWN: Pressing DOWN decreases adjusted values.
(Press both switches at once for resetting zero/ span adjustments.)
Input range selector: switching input range between S1 and S2 ranges. Bottom position for current (Z1).

Output range selectors

	SW3				
	1	2	3	4	
V1	OFF	OFF	ON	ON	Not ATT
V2	OFF	OFF	ON	ON	Not ATT
Z1	ON	ON	OFF	OFF	Not ATT

	SW4								
	1	2	3	4	5	6	7	8	
V1	ON	ON	OFF	ON	ON	$*$	ON	OFF	
V2	ON	OFF	ON	OFF	ON	$*$	ON	OFF	
Z 1	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	

	SW6		SW7	
	V	I	V	I
V1	ON	OFF	ON	OFF
V2	ON	OFF	ON	OFF
Z1	OFF	ON	OFF	ON
*Don't care.				

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

