MAISYSTEM CO., LTD.

Remote I/O R1M Series

THERMOCOUPLE & DC INPUT MODULE (8 points; isolated)

MODEL R1MS-GH3

MODEL & SUFFIX CODE SELECTION

R1MS-GH3T-D

MODEL -

I/O TYPE -

GH3 : Thermocouple or DC input, 8 points Channel-to-channel isolation

FIELD TERMINAL TYPE

T : M3 screw terminals

POWER INPUT -

 $\textbf{M2:}\ 100-240V\,AC$

 $\textbf{R}~: 24V\,DC$

ORDERING INFORMATION

Specify code number. (e.g. R1MS-GH3T-M2)

RELATED PRODUCTS

•Resistor module (model: REM3-250)

- R1X configurator software (model: R1CON) Downloadable at M-System's web site: http://www.m-system.co.jp
- •PC configurator cable (model: MCN-CON)

Functions & Features

- 8-point thermocouple or DC inputs
- Complete channel-to-channel isolation
- Trigger input and alarm contact output
- Filtering protection against 50/60 Hz noise
- Modbus RS-485 and RS-232C interface
- Easy system expansion via Modbus RTU

GENERAL SPECIFICATIONS

Connection

 $\begin{array}{l} \textbf{Power input, transmission: Terminal block (wire}\\ size \ 0.14-1.5\ mm^2\ or\ AWG26-16\ for\\ both\ stranded\ and\ single-core\ cables) \end{array}$

RS-232C: 9-pin D-sub connector (male)

I/O: M3 screw terminals Separate sets of terminals for DC and TC are assigned to each channel, however, DO NOT connect both sets of terminals for the same channel at once for timesharing measurement.

PC Configurator: Miniature jack, RS-232C level

Isolation: Input 1 to input 2 to input 3 to input 4 to input 5 to input 6 to input 7 to input 8 to trigger input to alarm output to RS-232C or RS-485 or configurator jack to power to FG

Address setting: Rotary switch; 1 - F

Operating mode setting: Rotary switch; burnout type and line noise frequency setting

- RUN indicator LED: Green light blinks in normal conditions.
- **Burnout**: Upscale, downscale or no burnout selectable with the operating mode setting rotary switch (default: No). Set to 'No Burnout' when other devices are connected in parallel to the R1MS.
- Line noise filtering: Specifying line frequency to 50 Hz or 60 Hz in order to increase normal mode noise rejection ratio. (default: 50/ 60 Hz for use with both frequencies)

COMMUNICATION SPECIFICATIONS

Baud rate: 38.4 kbps

Communication: Half-duplex, asynchronous, no procedure Protocol: Modbus RTU Refer to Modbus Protocol Reference Guide (EM-5650) for supported functions.

■RS-232C

Standard: Conforms to RS-232C, EIA **Transmission distance**: 10 meters max.

∎RS-485

Standard: Conforms to RS-485, EIA Transmission distance: 500 meters max. Transmission media: Shielded twisted-pair cable (CPEV-S 0.9 dia.)

INPUT & OUTPUT

Input:	Thermocouple or DC input within ±10V,	
	8 points	
Input resis	tance	
Thermo	couple : ≥1MΩ when powered;	
	≥200kΩ when not powered	
DC:	≥800kΩ when powered;	
	≥700kΩ when not powered	
Thermoco	uple types: PR, K, E, J, T, B, R, S, C, N,	
	U, L, P	
Sampling I	rate : 50 millisec./8 points	
Trigger inp	out: Dry contact; detected ON at ≤1.5V	
Sensing	: approx. 3V DC @0.8mA	
Alarm outp	out: PhotoMOSFET relay (no polarity);	
	$\leq 50\Omega$ at ON, $\geq 1M\Omega$ at OFF;	
	OFF when not powered	
Peak loa	ad voltage: 50V max.	
Continu	ous load current: 50mA max.	
Peak loa	ad current: 300mA max. (≤0.1 sec.)	
Burnout detecting : ≤45nA for upscale or downscale;		
	\leq 5nA with no burnout (when measuring 0°C)	

Burnout response: ≤10 seconds

INSTALLATION

Power inpu	ut		
AC:	Operational voltage range 85 – 264V;		
	47 – 66 Hz, approx. 9VA		
DC:	Operational voltage range 24V ±10%;		
	ripple 10% p-p max., approx. 3.5W		
Operating	temperature: -5 to $+60^{\circ}$ C (23 to $+140^{\circ}$ F)		
Operating	humidity: 30 to 90% RH (non-condensing)		
Mounting:	Surface or DIN rail		
Dimensions: W175×H115×D40 mm			
	(6.89"×4.53"×1.57")		
Weight:	450 g (0.99 lbs)		

PERFORMANCE (% of measuring range)

Accuracy

DC input: $\pm 0.05\%~(\pm 10mV)$

Thermocouple input

mermocoupie input				
T/C	USABLE	CONFORMANCE	ACCURACY	
1/0	RANGE (°C)	RANGE (°C)	(°C)	
(PR)	0 to 1770	400 to 1770	±4.6	
K(CA)	-270 to +1370	0 to 1370	±1.5	
E (CRC)	-270 to +1000	0 to 1000	±0.8	
J (IC)	-210 to +1200	0 to 1200	±1.0	
T (CC)	-270 to +400	0 to 400	±1.3	
B (RH)	100 to 1820	700 to 1820	±7.2	
R	-50 to +1760	400 to 1760	±4.8	
S	-50 to +1760	400 to 1760	±5.3	
C (WRe 5-26)	0 to 2320	0 to 2320	±4.9	
Ν	-270 to +1300	0 to 1300	±1.9	
U	-200 to +600	0 to 600	±1.3	
L	-200 to +900	0 to 900	±1.0	
$P \; (Platinel \; II)$	0 to 1395	0 to 1395	±1.7	
T/C	USABLE RANGE (°F)	CONFORMANCE RANGE (°F)	ACCURACY (°F)	
(PR)	32 to 3218	752 to 3218	±8.28	
K(CA)	-454 to +2498	32 to 2498	±2.7	
E (CRC)	-454 to +1832	32 to 1832	±1.44	
J (IC)	-346 to +2192	32 to 2192	±1.8	
T (CC)	-454 to +752	32 to 752	±2.34	
$B\left(RH ight)$	212 to 3308	1292 to 3308	±13.0	
R	-58 to +3200	752 to 3200	±8.64	
S	-58 to +3200	752 to 3200	±9.54	
C (WRe 5-26)	32 to 4208	32 to 4208	±8.82	
Ν	-454 to +2372	32 to 2372	±3.42	
U	-328 to +1112	32 to 1112	±2.34	
L	-328 to +1652	32 to 1652	±1.8	
P (Platinel II)	32 to 2543	32 to 2543	±3.06	

Remark 1) Measuring accuracy at $50\mu V$ emf. Remark 2) CJC error is not included.

Cold junction compensation error: (°C)

 $\leq \pm (1.0 + [\text{Ambient Temp.} - 20] \times 0.04)$

in stable ambient temperature

(e.g. $\pm 1.4^{\circ}C$ at $10^{\circ}C$ and $30^{\circ}C$)

Sudden ambient temperature change affects the cold junction compensation. Be sure to place the R1MS in stable ambient.

Temp. coefficient: \leq (Accuracy / 4) / °C

(e.g. DC: ±0.0125%/°C or ±2.5mV/°C,

TC: $\pm 12.5 \mu V/^{\circ}C$, $\pm 0.2^{\circ}C/^{\circ}C$ with type E)

Response time: Approx. 0.55~sec.~(0-90%)

Common mode noise rejection: $\geq 120 \text{ dB} (50/60 \text{ Hz})$

Normal mode noise rejection: ≥85 dB (50/60 Hz) with the filtering set to a specific fre-

quency; ≥35 dB with 50/60 Hz setting Insulation resistance: ≥100M Ω with 500V DC

Dielectric strength: 1500V AC @1 minute

(input 1 to input 2 to input 3 to input 4 to input 5 to input 6 to input 7 to input 8 to trigger input to alarm output to RS-232C or RS-485 or configurator jack)
2000V AC @1 minute (input or alarm output or RS-232C or RS-485 or configurator jack to power to FG)

REAR VIEW

■RS-232C INTERFACE

ABBR.	PIN NO.	EXPLANATION OF FUNCTION		
BA(SD)	2	Transmitted Data		
$BB\left(RD ight)$	3	Received Data		
$AB\left(SG\right)$	5	Signal Common		
CB(CS)	7	Clear to Send		
$CA\left(RS\right)$	8	Request to Send		
	1	Not Used.		
	4	DO NOT connect. Connecting may		
	6	cause malfunctions.		
	9			

■OPERATING MODE SETTING

COLD JUNCTION	LINE NOISE	BURNOUT (T/C)		
COMP. (T/C)	FREQ.	NONE	UP	DOWN
With	50/60 Hz	1	2	3
	$50~\mathrm{Hz}$	4	5	6
	$60~\mathrm{Hz}$	7	8	9
Without	$50~\mathrm{Hz}$	Α	В	C
	$60~\mathrm{Hz}$	D	Е	F

Note 1: AD conversion rate is half as long as the line frequency.

Note 2: Specifying the exact frequency (50 Hz and 60 Hz) provides better protection than 50/60 Hz setting. Note 3: Factory default setting is '1.'

R1MS-GH3

CONNECTION DIAGRAM

Remark 1 INPUT 1		Isolated Analog Input 1	Control Circuit
		Isolated Analog Input 2	
		Isolated Analog Input 3	T1 + To Other T2 - I/O Modules
	25 8	Isolated Analog Input 4	Term. Resist. T4 JACK - CONFIGURATOR
	26 9 27 10	Isolated Analog Input 5	Power T5 U (+)
	28 11 29 12	Isolated Analog Input 6	
		Isolated Analog Input 7	
	32 15 33 16	Isolated Analog Input 8	
	34 35 18	Isolated Alarm Output	
ALARM OUTPUT + -	36 Isolat	ed Trigger Input]

* When the device is located at the end of a transmission line via twisted-pair cable, (when there is no cross-wiring), close across the terminal T2 – T3 with the attached jumper pin (or with a leadwire). When the device is not at the end, remove the jumper pin.

Remark 1: Separate sets of terminals for DC and TC are assigned to each channel, however, DO NOT connect to both sets of terminals at once. Duplicate connection may affect measuring accuracies. DC and TC can be mixed among eight channels.

Remark 2: Be careful to eliminate noise as much as possible by e.g. using shielded cables. Remark 3: Be sure to earth the FG terminal and the cable shielding to a most stable earth point in the environment.

Remark 4: Resistor modules (model: REM3-250) can be used to convert current inputs into voltage. However, use of REM3 is not recommended when TC inputs are mixed because the heat developed on and around the REM3 affects the cold junction compensation performance.

Specifications subject to change without notice.

EXTERNAL DIMENSIONS & TERMINAL ASSIGNMENTS mm (inch)

SYSTEM CONFIGURATION EXAMPLE

When the cable distance between the PC and the R1Ms is long, insert an RS-232C/RS-485 Converter for isolation.