UniStream™ Uni-I/O™ Modules

Technical Specifications UIS-04PTN, UIS-04PTKN

This guide provides specifications for Unitronics' Uni- I/O^{TM} modules UIS-04PTN and UIS-04PTKN. Those modules comprise:

• 4 RTD inputs

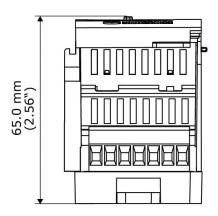
Uni-I/O modules are compatible with UniStreamTM family of Programmable Logic Controllers. They may be either snapped onto the back of a UniStreamTM HMI Panel next to a CPU-for-Panel to create an all-in-one HMI + PLC controller, or installed on a standard DIN Rail using a Local Expansion Adapter.

Installation Guides are available in the Unitronics Technical Library at www.unitronicsplc.com

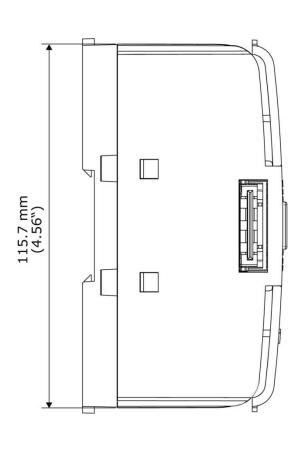
RTD Inputs				
Number of inputs	4			
UIS-04PTN input range (1)	Input Type	Nominal Values	Over/Under-range Values *	
	PT100 0.00385 0.00392 0.00391	-200°C ≤ T ≤ 850°C (-328°F ≤ T ≤ 1,562°F)	Under-range: -220°C ≤ T < -200°C (-364°F ≤ T < -328°F) Over-range: 850°C < T ≤ 860°C	
			(1,562°F < T ≤ 1,580°F)	
	NI100 0.00618	-100°C ≤ T ≤ 260°C (-148°F ≤ T ≤ 500°F)	Under-range: -150°C ≤ T < -100°C (-238°F ≤ T < -148°F)	
			Over-range: 260°C < T ≤ 270°C (500°F < T ≤ 518°F)	
	NI100 0.00617	-60°C ≤ T ≤ 180°C (-76°F ≤ T ≤ 356°F)	Under-range: -104°C ≤ T < -60°C -155.2°F ≤ T < -76°F)	
			Over-range: 180°C < T ≤ 210°C (356°F < T ≤ 410°F)	
	NI120 0.00672	-80°C ≤ T ≤ 260°C (-112°F ≤ T ≤ 500°F)	Under-range: -130°C ≤ T < -80°C (-202°F ≤ T < -112°F)	
			Over-range: 260°C < T ≤ 270°C (500°F < T ≤ 518°F)	
	Resistance	$0\Omega \le R \le 390\Omega$	390Ω < R ≤ 395.85Ω	
	* Overrflow or Underflow (11) is declared when an input value exceeds the Over-range or Under-range boundaries respectively.			
UIS-04PTKN input range ⁽¹⁾	Input Type	Nominal Values	Over/Under-range Values *	
	PT1000 0.00385 0.00392	-200°C ≤ T ≤ 850°C (-328°F ≤ T ≤ 1,562°F)	Under-range: -220°C ≤ T < -200°C (-364°F ≤ T < -328°F)	
			Over-range: 850°C < T ≤ 860°C (1,562°F < T ≤ 1,580°F)	

3/16 UniStream™

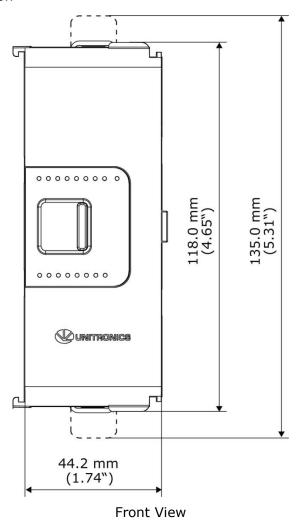
NI1000 $-100^{\circ}\text{C} \le T \le 260^{\circ}\text{C}$ Under-range: $-150^{\circ}\text{C} \le T < 500^{\circ}\text{F}$ $-150^{\circ}\text{C} \le T < -238^{\circ}\text{F} \le T < 0$ Over-range:			
$260^{\circ}\text{C} < T \le 2$ (500°F < T \le 5	-148°F)		
NI1000 LG $-50^{\circ}\text{C} \le T \le 190^{\circ}\text{C}$ Under-range: $-60^{\circ}\text{C} \le T < -50^{\circ}\text{C} \le T \le -50^{\circ}\text{C} \le T < -50^{\circ}\text{C} \le T < -50^{\circ}\text{C} \le T \le -50^{\circ}\text{C} \le -50^{\circ}\text{C} \le T \le -50^{\circ}\text{C} \le -50^{\circ}$			
Over-range: $190^{\circ}\text{C} < \text{T} \le 2$ $(374^{\circ}\text{F} < \text{T} \le 3)$			
Resistance $0\Omega \le R \le 3,900\Omega$ $3900\Omega < R \le 3$	3,958.5Ω		
* Overrflow or Underflow (1) is declared when an input the Over-range or Under-range boundaries respectively.			
Sensor Type 4, 3 and 2 wire (2)			
Absolute maximum rating ±50V at any pin relative to power-supply 0V			
Isolation None			
Conversion method Delta-sigma			
Resolution RTD - 0.1°C (0.1°F) (3)	RTD - 0.1°C (0.1°F) (3)		
	Resistance – 14 bits		
Resistance – 14 bits			
Accuracy UIS-04PTN:			
Accuracy UIS-04PTN: $25^{\circ}\text{C} / -20^{\circ}\text{C} \text{ to } 55^{\circ}\text{C}$ RTD $-\pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C} (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F})$			
Accuracy UIS-04PTN: $25^{\circ}\text{C} / -20^{\circ}\text{C to } 55^{\circ}\text{C}$ RTD $-\pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C } (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F})$			
Accuracy UIS-04PTN: 25°C / -20°C to 55°C RTD - ±0.5°C / ±1.0°C (±0.9°F / ±1.8°F)			
Accuracy 25°C / -20°C to 55°C (77°F / -4°F to 131°F) UIS-04PTN: RTD - ± 0.5 °C / ± 1.0 °C (± 0.9 °F / ± 1.8 °F) Resistance - ± 0.05 % / ± 0.1 % of full scale			
Accuracy 25°C / -20°C to 55°C (77°F / -4°F to 131°F) UIS-04PTN: RTD - ± 0.5 °C / ± 1.0 °C (± 0.9 °F / ± 1.8 °F) Resistance - ± 0.05 % / ± 0.1 % of full scale UIS-04PTKN:			
Accuracy 25°C / -20°C to 55°C (77°F / -4°F to 131°F) RESISTANCE $-\pm 0.5^{\circ}\text{C}$ / $\pm 1.0^{\circ}\text{C}$ ($\pm 0.9^{\circ}\text{F}$ / $\pm 1.8^{\circ}\text{F}$) Resistance $-\pm 0.05\%$ / $\pm 0.1\%$ of full scale UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C}$ / $\pm 1.5^{\circ}\text{C}$ ($\pm 1.8^{\circ}\text{F}$ / $\pm 2.7^{\circ}\text{F}$)			
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C (77°F / -4°F to 131°F) $ \begin{array}{c} \text{RTD} - \pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.05\% / \pm 0.1\% \ \text{of full scale} \\ \\ \text{UIS-04PTKN}: \\ \text{RTD} - \pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.1\% / \pm 0.15\% \ \text{of full scale} \\ \\ \text{Noise rejection} \\ \\ \text{Step response} \end{array} $	ency		
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C (77°F / -4°F to 131°F) $ \begin{aligned} &\text{RTD} - \pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}) \\ &\text{Resistance} - \pm 0.05\% / \pm 0.1\% \ \text{of full scale} \end{aligned} $ UIS-04PTKN: $ \begin{aligned} &\text{RTD} - \pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}) \\ &\text{Resistance} - \pm 0.1\% / \pm 0.15\% \ \text{of full scale} \end{aligned} $ Noise rejection $ \begin{aligned} &\text{Noise rejection} \end{aligned} $ 50Hz, 60Hz	ency		
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C (77°F / -4°F to 131°F) $ \begin{array}{c} \text{RTD} - \pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.05\% / \pm 0.1\% \ \text{of full scale} \\ \\ \text{UIS-04PTKN}: \\ \text{RTD} - \pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.1\% / \pm 0.15\% \ \text{of full scale} \\ \\ \text{Noise rejection} \\ \\ \text{Step response} \ ^{(4)} \\ \text{Smoothing (filter)} \\ \\ \text{Noise Rejection Frequency} $	ency		
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C ($77^{\circ}\text{F} / -4^{\circ}\text{F}$ to 131°F) Resistance $-\pm 0.05^{\circ}\text{C} / \pm 1.0^{\circ}\text{C}$ ($\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}$) Resistance $-\pm 0.05^{\circ}\text{M} / \pm 0.1^{\circ}\text{M}$ of full scale UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C}$ ($\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}$) Resistance $-\pm 0.1^{\circ}\text{M} / \pm 0.15^{\circ}\text{M}$ of full scale Noise rejection Step response (4) (0 to 100% of final value) Smoothing (filter) Noise Rejection Frequence 60Hz 50Hz	ency		
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C (77°F / -4°F to 131°F) $ \begin{array}{c} \text{RTD} - \pm 0.5^{\circ}\text{C} / \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.05\% / \pm 0.1\% \ \text{of full scale} \\ \\ \text{UIS-04PTKN}: \\ \text{RTD} - \pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}) \\ \text{Resistance} - \pm 0.1\% / \pm 0.15\% \ \text{of full scale} \\ \\ \text{Noise rejection} \\ \\ \text{Step response} \\ \text{Step response} \\ \text{(4)} \\ \text{(0 to 100\% of final value)} \\ \\ \hline \\ \text{Smoothing (filter)} \\ \hline \\ Noise Rejection Frequency of the properties of the p$	ency		
Accuracy 25°C / -20°C to 55°C (77°F / -4°F to 131°F) RTD $-\pm 0.5^{\circ}\text{C}$ / $\pm 1.0^{\circ}\text{C}$ ($\pm 0.9^{\circ}\text{F}$ / $\pm 1.8^{\circ}\text{F}$) Resistance $-\pm 0.05\%$ / $\pm 0.1\%$ of full scale UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C}$ / $\pm 1.5^{\circ}\text{C}$ ($\pm 1.8^{\circ}\text{F}$ / $\pm 2.7^{\circ}\text{F}$) Resistance $-\pm 0.1\%$ / $\pm 0.15\%$ of full scale Noise rejection Step response (4) (0 to 100% of final value) Smoothing (filter) Noise Rejection Frequence of the final value of the final v	ency		
Accuracy $25^{\circ}\text{C} / -20^{\circ}\text{C}$ to 55°C ($77^{\circ}\text{F} / -4^{\circ}\text{F}$ to 131°F) Resistance $-\pm 0.05^{\circ}\text{C} / \pm 1.0^{\circ}\text{C}$ ($\pm 0.9^{\circ}\text{F} / \pm 1.8^{\circ}\text{F}$) Resistance $-\pm 0.05^{\circ}\text{M} / \pm 0.1^{\circ}\text{M}$ of full scale UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C} / \pm 1.5^{\circ}\text{C}$ ($\pm 1.8^{\circ}\text{F} / \pm 2.7^{\circ}\text{F}$) Resistance $-\pm 0.1^{\circ}\text{M} / \pm 0.15^{\circ}\text{M}$ of full scale Noise rejection Step response (4) (0 to 100% of final value) Smoothing (filter) Noise Rejection Frequence (60Hz S0Hz) None 465ms 535ms Weak 930ms 1,070ms Medium 1,860ms 2,140ms			
Accuracy 25°C / -20°C to 55°C (77°F / -4°F to 131°F) RTD $-\pm 0.5^{\circ}\text{C}$ / $\pm 1.0^{\circ}\text{C}$ ($\pm 0.9^{\circ}\text{F}$ / $\pm 1.8^{\circ}\text{F}$) Resistance $-\pm 0.05\%$ / $\pm 0.1\%$ of full scale UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C}$ / $\pm 1.5^{\circ}\text{C}$ ($\pm 1.8^{\circ}\text{F}$ / $\pm 2.7^{\circ}\text{F}$) Resistance $-\pm 0.1\%$ / $\pm 0.15\%$ of full scale Noise rejection Step response (4) (0 to 100% of final value) Smoothing (filter) Noise Rejection Frequence of the properties of t			
Accuracy $25^{\circ}\text{C} \ / \ -20^{\circ}\text{C} \ \text{to } 55^{\circ}\text{C} \ (77^{\circ}\text{F} \ / \ -4^{\circ}\text{F to } 131^{\circ}\text{F})$ $RTD - \pm 0.5^{\circ}\text{C} \ / \ \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} \ / \ \pm 1.8^{\circ}\text{F}) \ Resistance - \pm 0.05\% \ / \ \pm 0.1\% \ of full scale$ $UIS-04PTKN:$ $RTD - \pm 1.0^{\circ}\text{C} \ / \ \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} \ / \ \pm 2.7^{\circ}\text{F}) \ Resistance - \pm 0.1\% \ / \ \pm 0.15\% \ of full scale}$ Noise rejection $Step \ response^{(4)} \ (0 \ to \ 100\% \ of \ final \ value)$ $Smoothing \ (filter)$ None $465ms$ $535ms$ Weak $930ms$ $1,070ms$ Medium $1,860ms$ $2,140ms$ Strong $3,720ms$ $4,280ms$ Update time $^{(4)}$ Noise Rejection Frequency Update Time			
Accuracy $25^{\circ}\text{C} \ / \ -20^{\circ}\text{C} \ \text{to } 55^{\circ}\text{C} \ (77^{\circ}\text{F} \ / \ -4^{\circ}\text{F to } 131^{\circ}\text{F})$ UIS-04PTN: RTD $-\pm 0.5^{\circ}\text{C} \ / \pm 1.0^{\circ}\text{C} \ (\pm 0.9^{\circ}\text{F} \ / \ \pm 1.8^{\circ}\text{F}) \ \text{Resistance} - \pm 0.05\% \ / \ \pm 0.1\% \ \text{of full scale}$ UIS-04PTKN: RTD $-\pm 1.0^{\circ}\text{C} \ / \ \pm 1.5^{\circ}\text{C} \ (\pm 1.8^{\circ}\text{F} \ / \ \pm 2.7^{\circ}\text{F}) \ \text{Resistance} - \pm 0.1\% \ / \ \pm 0.15\% \ \text{of full scale}$ Noise rejection Step response (4) Smoothing (filter) Noise Rejection Frequence (0 to 100% of final value) None 465ms 535ms Weak 930ms 1,070ms Weak 930ms 1,070ms Medium 1,860ms 2,140ms Strong 3,720ms 4,280ms Update time (4) Noise Rejection Frequency 60Hz 465ms	1e		


IO/COM Bus	
Bus current consumption	90mA maximum

LED Indications					
Input LEDs	Red	On: Input value is in Overflow, Underflow, or a connection fault occurs			
Status LED	A triple color LED. Indications are as follows:				
	Color	LED State	Status		
	Green	On	Operating normally		
		Slow blink	Boot		
		Rapid blink	OS initialization		
	Green/Red	Slow blink	Configuration mismatch		
	Red	Slow blink	No IO exchange		
		Rapid blink	Communication error		
	Orange	Rapid Blink	OS Upgrade		


Environmental	
Protection	IP20, NEMA1
Operating temperature	-20°C to 55°C (-4°F to 131°F)
Storage temperature	-30°C to 70°C (-22°F to 158°F)
Relative Humidity (RH)	5% to 95% (non-condensing)
Operating altitude	2,000 m (6,562 ft)
Shock	IEC 60068-2-27, 15G, 11ms duration
Vibration	IEC 60068-2-6, 5Hz to 8.4Hz, 3.5mm constant amplitude, 8.4Hz to 150Hz, 1G acceleration

3/16 UniStream™


Dimensions	
Weight	100 g (0.220 lb)
Size	Refer to the images below

Bottom View

Unitronics 4

Notes:

1. The UIS-04PTN and UIS-04PTKN measures values that are slightly higher or lower than the nominal input range (i.e. Input Over/Under-range respectively).

Note that when input Overflow, Underflow or a connection fault occurs, it is indicated in the corresponding I/O Status tag (refer to the UniLogic help for details) as well as by the respective input LED (see LED Indications), while the input value is registered as follows:

Fault Type	Registered Value in the Input Tag
Overflow	32,767
Underflow	-32,767
Connection fault	-32,768

2. The UIS-04PTN and UIS-04PTKN inherently supports 3-wire sensors.

4-wire sensors may be connected by utilizing 3 of the sensor wires; in-order to achieve the specified performance, all sensor wires shall be of identical type and length just as with a 3-wire sensor connection.

2-wire sensors may also be connected; performance in this case will degrade because of the wires` resistance.

Refer to the UIS-04PTN and UIS-04PTKN installation guide for detailed installation instructions.

- 3. For temperature measurement, the value is represented in 0.1° units. For example, a temperature of 12.3° is represented as 123 at the Value tag.
- 4. Step response and update time are independent of the number of inputs that are used.
- 5. See LED Indications Table above for description of the relevant indications. Note that the diagnostics results are also indicated in the I/O tags and can be observed through the UniApps[™] or the online state of the UniLogic[™].
- 6. Sensor connection fault check is active by default for both temperature and resistance measurements.
- 7. Sensor connection fault check may interfere with some test equipment like resistance/RTD simulators and thus may induce reading errors or cause malfunction of the test equipment and/or the UIS-04PTN and UIS-04PTKN.

In order to interoperate correctly with such equipment, you may set the Disable Fault Detection I/O tag. This will disable connection fault check for all inputs.

Note that when this tag is set, the UIS-04PTN and UIS-04PTKN will not check, or report, connection faults; thus, the reading in such case is unpredictable.

The information in this document reflects products at the date of printing. Unitronics reserves the right, subject to all applicable laws, at any time, at its sole discretion, and without notice, to discontinue or change the features, designs, materials and other specifications of its products, and to either permanently or temporarily withdraw any of the forgoing from the market.

All information in this document is provided "as is" without warranty of any kind, either expressed or implied, including but not limited to any implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Unitronics assumes no responsibility for errors or omissions in the information presented in this document. In no event shall Unitronics be liable for any special, incidental, indirect or consequential damages of any kind, or any damages whatsoever arising out of or in connection with the use or performance of this information.

The tradenames, trademarks, logos and service marks presented in this document, including their design, are the property of Unitronics (1989) (R"G) Ltd. or other third parties and you are not permitted to use them without the prior written consent of Unitronics or such third party as may own them.

03/16

UniStream™ Uni-I/O™ Modules

Technical Specifications UIS-08TC

This guide provides specifications for Unitronics' Uni-I/O™ module UIS-08TC. This module comprises:

• 8 Thermocouple inputs

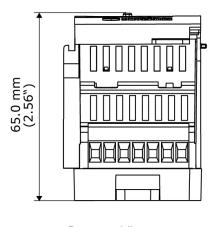
Uni-I/O modules are compatible with UniStream $^{\text{TM}}$ family of Programmable Logic Controllers. They may be either snapped onto the back of a UniStream $^{\text{TM}}$ HMI Panel next to a CPU-for-Panel to create an all-in-one HMI + PLC controller, or installed on a standard DIN Rail using a Local Expansion Adapter.

Installation Guides are available in the Unitronics Technical Library at www.unitronics.com

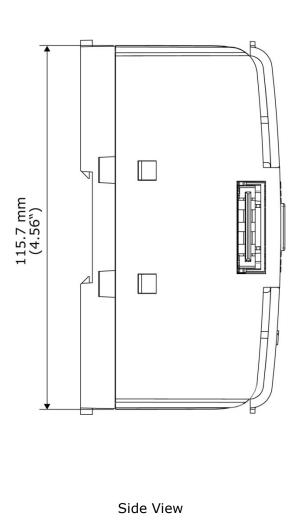
Inputs					
Number of inputs	8				
Input range (1)	Input type	Nominal values	Over/Under-range Values *		
	Thermocouple type J	$-200^{\circ}\text{C} \le T \le 1,200^{\circ}\text{C}$ $(-328^{\circ}\text{F} \le T \le 2,192^{\circ}\text{F})$	Under-range: -210°C ≤ T < -200°C (-346°F ≤ T < -328°F)		
			Over-range: 1,200°C < T ≤ 1,250°C (2,192°F < T ≤ 2,282°F)		
	Thermocouple type K	-200°C ≤ T ≤ 1,372°C (-328°F ≤ T ≤ 2,501.6°F)	Under-range: -270°C ≤ T < -200°C (-454°F ≤ T < -328°F)		
			Over-range: $1,372^{\circ}C < T \le 1,400^{\circ}C$ $(2,501.6^{\circ}F < T \le 2,552^{\circ}F)$		
	Thermocouple type T	-200°C ≤ T ≤ 400°C (-328°F ≤ T ≤ 752°F)	Under-range: -270°C ≤ T < -200°C (-454°F ≤ T <-328°F)		
			Over-range: 400°C < T ≤ 430°C (752°F < T ≤ 806°F)		
	Thermocouple type E	-200 °C \leq T \leq 1,000°C (-328°F \leq T \leq 1,832°F)	Under-range: -270°C ≤ T < -200°C (-454°F ≤ T < -328°F)		
			Over-range: $1,000^{\circ}C < T \le 1,010^{\circ}C$ $(1,832^{\circ}F < T \le 1,850^{\circ}F)$		
	Thermocouple type R	$0^{\circ}C \le T \le 1,768^{\circ}C$ $(32^{\circ}F \le T \le 3,214.4^{\circ}F)$	Under-range: -50°C ≤ T < 0°C (-58°F ≤ T < 32°F)		
			Over-range: $1,768^{\circ}C < T \le 1,800^{\circ}C$ $(3,214.4^{\circ}F < T \le 3,272^{\circ}F)$		
	Thermocouple type S	$0^{\circ}C \le T \le 1,768^{\circ}C$ $(32^{\circ}F \le T \le 3,214.4^{\circ}F)$	Under-range: -50°C ≤ T < 0°C (-58°F ≤ T < 32°F)		
Unitronics			Over-range: $1,768^{\circ}C < T \le 1,800^{\circ}C$ $(3,214.4^{\circ}F < T \le 3,272^{\circ}F)$		

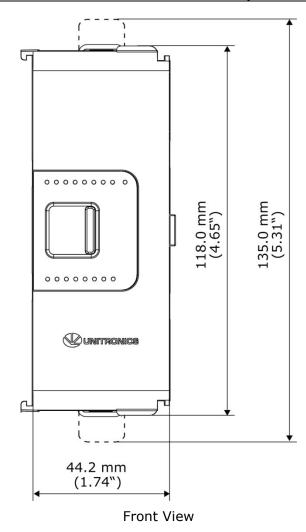
	Thermocouple type B	200°C ≤ T ≤ 1 (392°F ≤ T ≤	•	Under-range: 100°C ≤ T < 200°C (212°F ≤ T < 392°F) Over-range: 1,820°C < T ≤ 1,870°C
	Thermocouple type N	-210°C ≤ T ≤ (-346°F ≤ T ≤		(3,308°F < T ≤ 3,398°F) Under range: -270°C ≤ T < -210°C (-454°F ≤ T < -346°F)
				Over-range: 1,300°C < T ≤ 1,350°C (2,372°F < T ≤ 2,462°F)
	Thermocouple type C	$10^{\circ}C \le T \le 2,$ $(50^{\circ}F \le T \le 4)$		Under-range: 0°C ≤ T < 10 °C (32°F ≤ T < 50°F)
				Over-range: 2,315 °C < T ≤ 2,370 °C (4,199°F < T ≤ 4,298°F)
	Voltage	-70mV ≤ Voltage ≤70mV		Under-range: -71.05mV ≤ Voltage < -70mV Over-range:
	* Overflow or Underflow (1) is		s declared w	70mV ≤ Voltage < 71.05mV hen an input value exceeds the
	Over-range or l			
Absolute maximum rating	±36 V			
Isolation voltage				
Input to bus	500 VAC for 1 minute			
Input to input	120 VAC for 1 minute			
Input power supply to Bus	500 VAC for 1 minute			
Input power supply to input	500 VAC for 1 minute			
Conversion method	Delta-sigma			
Resolution	Thermocouple - Voltage - 15 bit		(4)	
Accuracy (4)	Input type		Accuracy	
(25°C / -20°C to 55°C)	Thermocouple t	ype J	± 0.4°C / ± 0.7°C (± 0.72°F / ± 1.26°F)	
	Thermocouple type K		± 0.5°C / ± 1.0°C (± 0.9°F / ± 1.8°F)	
	Thermocouple type T		± 0.6°C / ± 1.2°C (± 1.08°F / ± 2.16°F)	
	Thermocouple type E		± 0.4°C / ± 0.8°C (± 0.72°F / ± 1.44°F)	
	Thermocouple type R		± 1.2°C / ± 2.4°C (± 2.16°F / ± 4.32°F)	
	Thermocouple t	ype S	± 1.2°C / ± 2.4°C (± 2.16°F / ± 4.32°F)	
	Thermocouple t	ype B	± 2.0°C / ± 3.8°C (± 3.46°F / ± 6.84°F)	
	Thermocouple t	ype N	± 1.0°C / ± 1.5°C (± 1.8°F / ± 2.7°F)	
	Thermocouple t	ype C	± 0.8°C / ±	= 2.0°C (±1.44°F / ± 3.46°F)
	Voltage		\pm 0.05% / \pm 0.1% of full scale	

Noise rejection	10Hz, 50 Hz, 60 Hz, 400 Hz				
Step response (4)	Smoothing Noise Rejection Frequency				
(0 to 100% of final value)	(filter)	400Hz	60Hz	50Hz	10Hz
	None	310ms	470ms	550ms	2,470ms
	Weak	1,236ms	1,875ms	2,195ms	9,875ms
	Medium	2,470ms	3,750ms	4,390ms	19,750ms
	Strong	4,940ms	7,500ms	8,780ms	39,500ms
Update time (4)	Noise Rejection Frequency 400Hz 60Hz		Update Time		
			310ms		
			470ms		
	50Hz		550ms		
	10Hz 2,470ms		2,470ms		
Cold junction error	±1.5°C (±2.7°F)				
Cable	Shielded, see installation guide for details				
Diagnostics (6) (7)	Input Overflow or Underflow, sensor connection fault (6) (7)				


IO/COM Bus	
Bus current consumption	80mA maximum

LED Indications					
Input LEDs	Red	On: Input value is in Overflow, Underflow, or a connection fault occurs			
Status LED	A triple color LED. Indications are as follows:				
	Color	LED State	Status		
	Green	On	Operating normally		
		Slow blink	Boot		
		Rapid blink	OS initialization		
	Green/Red	Slow blink	Configuration mismatch		
	Red	Slow blink	No IO exchange		
		Rapid blink	Communication error		
	Orange	Rapid Blink	OS Upgrade		


9/14 UniStream™


Environmental		
Protection	IP20, NEMA1	
Operating temperature	-20°C to 55°C (-4°F to 131°F)	
Storage temperature	-30°C to 70°C (-22°F to 158°F)	
Relative Humidity (RH)	5% to 95% (non-condensing)	
Operating altitude	2,000 m (6,562 ft)	
Shock	IEC 60068-2-27, 15G, 11ms duration	
Vibration	IEC 60068-2-6, 5Hz to 8.4Hz, 3.5mm constant amplitude, 8.4Hz to 150Hz, 1G acceleration	

Dimensions	
Weight	100 g (0.220 lb)
Size	Refer to the images below

Bottom View

9/14 UniStream™

Notes:

1. The UIS-08TC measures values that are slightly higher or lower than the nominal input range (i.e. Input Over/Under-range respectively).

Note that when input Overflow, Underflow or a connection fault occurs, it is indicated in the corresponding I/O Status tag (refer to the UniLogic[™] help for details) as well as by the respective input LED (see LED Indications), while the input value is registered as follows:

Fault Type	Registered Value in the Input Tag
Overflow	32,767
Underflow	-32,767
Connection fault	-32,768

- 2. For temperature measurement, the value is represented in 0.1° units. For example, a temperature Of 12.3° is represented as 123 at the Value tag.
- 3. The internal cold junction accuracy is $\pm 1^{\circ}$ C for all thermocouple types. This accuracy adds to the accuracy in the table. The module requires at least 30 minutes of warm-up in order to meet the table specifications.
- 4. Step response and update time are independent of the number of inputs that are used.
- 5. See LED Indications Table above for description of the relevant indications. Note that the diagnostics results are also indicated in the I/O tags and can be observed through the UniApps[™] or the online state of the UniLogic[™].
- 6. Sensor connection fault check is active by default for both temperature and voltage measurements.
- 7. Sensor connection fault check may interfere with some test equipment like thermocouple/voltage simulators and thus may induce reading errors or cause malfunction of the test equipment and/or the UIS-08TC.

In order to interoperate correctly with such equipment, you may set the Disable Fault Detection I/O tag. This will disable connection fault check for all inputs.

Note that when this tag is set, the UIS-08TC will not check, or report, connection faults; thus, the reading in such case is unpredictable.

The information in this document reflects products at the date of printing. Unitronics reserves the right, subject to all applicable laws, at any time, at its sole discretion, and without notice, to discontinue or change the features, designs, materials and other specifications of its products, and to either permanently or temporarily withdraw any of the forgoing from the market.

All information in this document is provided "as is" without warranty of any kind, either expressed or implied, including but not limited to any implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Unitronics assumes no responsibility for errors or omissions in the information presented in this document. In no event shall Unitronics be liable for any special, incidental, indirect or consequential damages of any kind, or any damages whatsoever arising out of or in connection with the use or performance of this information.

The tradenames, trademarks, logos and service marks presented in this document, including their design, are the property of Unitronics (1989) (R"G) Ltd. or other third parties and you are not permitted to use them without the prior written consent of Unitronics or such third party as may own them.

DOC27023-A6 09/14