Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.
The versions with solenoid actuated NC contacts are considered interlocks with locking in accordance with ISO 14119, and the product's label is marked with the symbol shown.

Head and release devices with variable orientation

The head can be quickly turned to each of the four sides of the switch by unfastening the two fastening screws.
The auxiliary key release device can be rotated in 90° steps as well. This enables the switch to assume 32 different configurations.

Holding force of the locked actuator

The robust interlocking system guarantees a maximum actuator holding force of $F_{1 \max }=1100 \mathrm{~N}$.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Turnable key release with lock

The auxiliary key release device is used to allow the maintenance or the entry into the machinery to authorized personnel only. Turning the key corresponds to actuating the solenoid: the actuator is released. The device can be turned, thereby enabling installation of the safety switch in the machine while the release device remains accessible on the outside of the guard.

Wide-ranging actuator travel

The actuation head of this switch features a wide range of travel. In this way the guard can oscillate along the direction of insertion $(4.5 \mathrm{~mm})$ without causing unwanted machine shutdowns. This wide range of travel is available in all actuators in order to ensure maximum device reliability.

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the guard frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered by using common tools. See accessories on page 332.

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for higher contact reliability. Versions with gold-plated contacts available. Available in multiple variants with actuation by actuator or by solenoid.

Circuit board for monitoring the current consumption of the solenoid.

This technical solution resolves the problems that may derive from unstable power supply (machine distance from main transformers, voltage variation between night/day hours), allowing also a low solenoid power consumption and consequently enlarging the working temperature range of the switch.

Laser engraving

All FS series switches are permanently marked with a special laser system. As a result, the marking remains legible even under extreme operating conditions. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Two operating principles

The safety switches with solenoid offer two different operating principles for the actuator locking:
Operating principle D: locked actuator with de-energised solenoid. The actuator is released by applying the power supply to the solenoid.
Operating principle E: locked actuator with energised solenoid. The actuator is released by switching off the power supply to the solenoid. This version should only be used under certain conditions, since a power failure at the system will result in the immediate opening of the guard

Cable outputs

The switch is provided with three cable entries in different directions. This allows its application in series connections or in narrow places.

LED signalling lights

Thanks to the three threaded cable entries, the high luminosity LED signalling lights of the VF SL series can be installed on the switch.
The LED signalling lights can be be easily installed by screwing them on one of the conduit entries not used for electric cables. They can be used for many different purposes: for example, to signal, from a distance, whether the switch has been actuated; whether the guard has closed correctly; or whether the guard is locked or unlocked.
For more information see chapter Accessories, page 321.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 30 N , stopping any vibrations or gusts of wind from opening them.

Sealable auxiliary release device

Switches with locked actuator with deactivated solenoid (function principle D) are equipped with an auxiliary release device for the solenoid to simplify installation of the switch and to facilitate entry into the danger zone in the event of a power failure. The auxiliary release device acts on the switch exactly as if the solenoid was energised. As a result, it also actuates the electrical contacts. Can only be actuated with a couple of tools, this ensures adequate resistance to tampering. If required it can be sealed by means of the hole provided.

Gold-plated contacts

The contact blocks of these devices can be supplied gold-plated upon request. Ideal for applications with low voltages or currents; it ensures increased contact reliability. Available in two thicknesses (1 or 2.5 microns), it adapts perfectly to the various fields of application, ensuring a long endurance over time.

Selection diagram

product option
sold separately as accessory

Code structure

Contact blocks		
	Contacts activated by the solenoid $-\triangle$	Contacts activated by the actuator ■
18	$1 \mathrm{NO}+1 \mathrm{NC}$	/
20	$1 \mathrm{NO}+2 \mathrm{NC}$	1
21	3NC	1
28	$1 \mathrm{NO}+1 \mathrm{NC}$	1 NC
29	2 NC	1 NC
30	1 NC	2NC

Head type and operating principle

96D
locked actuator with de-energised solenoid

96E
locked actuator with energised solenoid

98D
locked actuator with de-energised solenoid with auxiliary key release

Solenoid supply voltage
$\mathbf{0 2 4}$
$24 \mathrm{Vac} / \mathrm{dc}(-10 \% \ldots+25 \%)$
$\mathbf{1 2 0}$
$120 \mathrm{Vac} / \mathrm{dc}(-15 \% \ldots+20 \%)$
$\mathbf{2 3 0}$
$230 \mathrm{Vac}(-15 \% \ldots+10 \%)$

Removing the release key

The key can be removed in locked and unlocked actuator position (standard)

V34
The key can be removed only in the locked position of the actuator

Pre-installed cable glands or connectors
no cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$
...
K40 M12 metal connector, 8-pole

K45 M12 plastic connector, 8-pole
or the complete list of possible combinations please contact our technical department.

Actuators

without actuator (standard)
F straight actuator VF KEYF
F1 angled actuator VF KEYF1
F2 jointed actuator VF KEYF2

F3
jointed actuator adjustable in two directions VF KEYF3

F7
jointed actuator adjustable in one direction VF KEYF7
F8 universal actuator VF KEYF8

Threaded conduit entry
M2 M20×1.5 (standard)
PG 13.5

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating
G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact blocks 20, 21, 28, 29, 30)

Main features

- Technopolymer housing, three conduit entries
- Protection degree IP67
- 6 contact blocks available
- 6 stainless steel actuators available
- 3 solenoid supply voltages available
- Versions with auxiliary release device or turnable lock
- Operation with energised or de-energised solenoid

Quality marks:

IMQ approval:	
CA02.03808	
UL approval:	E131787
CCC approval:	2007010305230011
EAC approval:	RU C-IT.УT03.B.00035/19

Technical data

Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
Three knock-out threaded conduit entries:
Protection degree:

\square

M20x1.5 (standard)
IP67 acc. to EN 60529 with
cable gland of equal
or higher protection degree

General data

SIL (SIL CL) up to:
Performance Level (PL) up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
B_{100} :
Mission time:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \max }$:
Max. holding force $F_{z h}$:
Maximum clearance of locked actuator:
Released actuator extraction force:
Tightening torques for installation:
Wire cross-sections and
wire stripping lengths:

Solenoid

Duty cycle:
Solenoid inrush power:

Solenoid consumption:
Average overall consumption:
Solenoid protection 24 V :
Solenoid protection 120 V :
Solenoid protection 230 V :

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
low acc. to EN ISO 14119
4,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
600 operating cycles/hour
800,000 operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
1100 N (head 96), 900 N (head 98)
acc. to EN ISO 14119
846 N (head 96), 692 N (head 98)
acc. to EN ISO 14119
4.5 mm

30 N
see page 339
see page 357

100\% ED (continuous operation)
20 VA $0.1 \mathrm{~s}(24 \mathrm{~V})$
18 VA $0,1 \mathrm{~s}(120 \mathrm{~V})$
18 VA $0,1 \mathrm{~s}(230 \mathrm{~V})$
4 VA
10 VA
fuse 500 mA , delayed
fuse 315 mA , delayed
fuse 160 mA , delayed

Notes: Calculate the power supply using the average overall consumption. Please consider the solenoid inrush power in order to avoid intervention of overload-protection in case of electronic power supply.
In compliance with standards:
IEC 60947-5-1, IEC 60947-1, IEC 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, IEC 61000-6-2, IEC 61000-6-3, EN 50581, BG-GS-ET-15, UL 508, CSA 22.2 N. 14.

Approvals:

EN 60947-5-1, UL 508, CSA 22.2 N. 14, GB/T14048.5-2017.

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EU, RoHS Directive 2011/65/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

©If not expresssly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 337 to 350.

Electrical data			Utilization category
	Thermal current (I_{t}): Rated insulation voltage (U_{i}): Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 28, 29, 30) 6 kV 4 kV (contact blocks 20, 21, 28, 29, 30) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ $U_{e}(\mathrm{~V})$ 250 400 500 $\mathrm{I}_{e}(\mathrm{~A})$ 6 4 1 Direct current: DC13 $U_{e}(\mathrm{~V})$ 24 125 250 $I_{e}(\mathrm{~A})$ 3 0.55 0.3
	Thermal current ($\left.\right\|_{\text {th }}$): Rated insulation voltage (U_{i}): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ I_{e} (A) 2 Direct current: DC13 $U_{e}(V) \quad 24$ $I_{e}^{e}(A) \quad 2$

Features approved by IMO

Rated insulation voltage (Ui):
500 Vac
400 Vac (for contact blocks $20,21,28,29,30$)
Conventional free air thermal current $\left(I_{\text {th }}\right): 10 \mathrm{~A}$
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage (U): 6 kV
4 KV (for contact blocks 20, 21, 28, 29, 30)
Protection degree of the housing IP67
MV terminals (screw terminals)
Pollution degree:
Utilization category:
3
Operating voltage (U) :
AC15
Operating current ($\left.\mathrm{I}_{\mathrm{e}}\right)^{\mathrm{e}}$:
$400 \mathrm{Vac}(50 \mathrm{~Hz})$

Forms of the contact element: $Z b, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening contacts on contact blocks 18, 20, 21, 28, 29, 30
In compliance with standards: EN 60947-1, EN 60947-5-1, fundamental requirements of the Low Voltage Directive 2014/35/EU.

Please contact our technical department for the list of approved products.

Features approved by UL

Electrical Ratings:	Q300 pilot duty ($69 \mathrm{VA}, 125-250 \mathrm{~V} \mathrm{dc})$
	A600 pilot duty (720 VA, 120-600 V ac
Environmental Ratings:	Types 1, 4X, 12, 13

Environmental Ratings: Types 1, 4X, 12, 13
Use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size range 12, 14 AWG, stranded or solid. The terminal tightening torque of 7.1 lb in (0.8 Nm).

Please contact our technical department for the list of approved products.

Operating principle

The operating principle of these safety switches allows three different operating states:
state A: with inserted and locked actuator
state B: with inserted but not locked actuator
state c: with extracted actuator
All or some of these states can be monitored by means of electrical contacts with positive opening by selecting the appropriate contact blocks. In detail, contact blocks that have electric contacts marked with the symbol of the solenoid ($\exists \nabla$) are switched in the transition between the state A and state B, while the electric contacts marked with the symbol of the actuator (0) are switched between state B and state C.
It is also possible to choose between two operating principles for the actuator locking:
Operating principle \mathbf{D} : locked actuator with de-energised solenoid. The actuator is released by applying the power supply to the solenoid (see example of the operating phases).
Operating principle E: locked actuator with energised solenoid. The actuator is released by switching off the power supply to the solenoid. This version should only be used under certain conditions, since a power failure at the system will result in the immediate opening of the guard.

Example: operating phases with FS 2896D024-F1 (switch with operating principle D)

Installation of two or more switches connected to the same power supply

24 V AC/DC versions only

- This operation is intended to reduce the effects of the combined solenoid inrush currents on the power supply and should only be executed if necessary and with great care.
- Switch off the power supply.
- Open the switch cover.
- Loosen the two screws that secure the black plastic protective cover of the solenoid to the switch body and remove the plastic protective cover.
- Use a pin to set the selector switch so that each switch has a different combination (see figure at the side). If more than two switches are installed, repeat the combinations for any next set of two switches.
- Reposition the black plastic protective cover and tighten the two screws with a torque of 0.8 Nm .

Contact positions related to switch states

	Operating principle D locked actuator with de－energised solenoid			Operating principle E locked actuator with energised solenoid		
Operating state	$\begin{gathered} \text { state } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { state } \\ \mathrm{C} \end{gathered}$	$\underset{\mathrm{A}}{\text { state }}$	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { C } \end{gathered}$
Actuator	Inserted and locked	Inserted and released	Extracted	Inserted and locked	Inserted and released	Extracted
Solenoid	De－energised	Energised	－	Energised	De－energised	－

FS 18•••••• 1NO +1 NC controlled by the solenoid	$\begin{aligned} & =\triangle \\ & -\nabla \end{aligned}$	$\begin{aligned} & 11-{ }_{12} \\ & 23-24 \end{aligned}$		七			\pm								11 23		12 24
FS 20•••••• 1NO +2 NC controlled by the solenoid	\pm	${ }_{11} \mathbf{L}_{12}$	11	－	12	11	－	12		L	12	11	－	12	11	－	12
	\pm	21 ¢ 22	21	－	22	21	－	22	21	L	22	21	－	22	21	－	22
	\pm	$33 \sim 34$	33	－	34	33	L	34	33	－	34	33	－	34	33	－	34
FS 21•••••• 3NC controlled by the solenoid	\pm	11 と 12	11	－	12	11	－	12	11	L	12	11	－	12	11	\bigcirc	12
	\pm	$21 \mathrm{~L}_{22}$	21	－	22	21	－	22	21	L	22	21	－	22	21	－	22
	\pm	$31-L_{32}$	31	－	32	31	\bigcirc	32	31	\square	32	31	\bigcirc	32	31	\bigcirc	32
FS $28 \cdot \bullet \bullet . \bullet$ $1 \mathrm{NO}+1 \mathrm{NC}$ controlled by the solenoid 1NC controlled by the actuator	\square	11 Ł 12	11	－	12	11	－	12	11	－	12	11	\bigcirc	12	11	－	12
	网阿	$21-\mathbf{L}_{22}$	21	L	22	21	－	22	21	L	22	21	\leftarrow	22	21	－	22
	\square	$33 \sim 34$	33	－	34	33	L	34	33	－	34	33	\square	34	33	－	34
FS 29 2NC controlled by the solenoid 1NC controlled by the actuator	$=\triangle$	${ }_{11} \mathbf{L}_{12}$	11	－	12	11	－	12	11	L	12	11	\bigcirc	12	11	\bigcirc	12
	\square	21 エ 22	21	－	22	21	－	22	21	－	22	21	－	22	21	－	22
	［－f	$31-\mathbf{L}_{32}$	31	L	32	31	－	32	31	L	32	31	L	32	31	\bigcirc	32
FS 30•••••• 1NC controlled by the solenoid 2NC controlled by the actuator	\pm	11 ¢ 12	11	－			－			－		11	－	12	11	－	12
	¢far	21 エ 22		L			－			L		21	L	22	21	－	22
	¢fle	$31-\left\llcorner_{32}\right.$	31	L			－			－	32	31	\square	32	31	\bigcirc	32

Limits of use

Do not use where dust and dirt may penetrate in any way into the head and deposit there．Especially not where powder，shavings，concrete or chemicals are sprayed．Adhere to the EN ISO 14119 requirements regarding low level of coding for interlocks．Do not use in environments with presence of explosive or flammable gas．In these case use ATEX products（see dedicated Pizzato catalogue）．
Attention！These switches alone are not suitable for applications where operators may physically enter the dangerous area，because an eventual closing of the door behind them could restart the machine operation．In these cases the actuator entry locking device VF KB1 shown on page 129 must be used．

Legend: Θ With positive opening according to EN 60947-5-1, 国 interlock with lock monitoring acc. to EN ISO 14119
How to read travel diagrams

IMPORTANT:

The state of the NC contact refers to the switch with inserted actuator and locked lock. In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.

Accessories

Article	Description		Article	Description
VF KB1	Lock out device		VF KLA371	Set of two locking keys
	Padlockable lock out device to prevent the actuator entry and the accidental closing of the door behind operators while they are in the danger area. Hole diameter for padlocks: 9 mm .			Extra copy of the locking keys to be purchased if further keys are needed (standard supply: 2 units). The keys of all switches have the same code. Other codes on request.
All values in the drawings are in mm		Accessories See page 321	\rightarrow The 2D and 3D files are available at www.pizzato.com	

Stainless steel actuators

IMPORTANT: These actuators can be used only with items of the FD, FP, FL, FC, and FS series (e.g. FS 1896D024-M2).
Low level of coding acc. to EN ISO 14119.

Description

The actuator can flex in four directions for applications where the guard alignment is not precise.

Actuator adjustable in one direction for guards with reduced dimensions.

Actuator adjustable in two directions for guards with reduced dimensions.

Jointed actuator for guards with poor alignment, adjustable in two dimensions for small doors; can be mounted in various positions. The metal fixing body has two pairs of bore holes; it is provided for rotating the working plane of the actuator by 90°.

